NVIDIA.

OPTIMIZING CUDA APPLICATIONS, ' & f\
NVIDIA A100 GPU

Some new features we will talk about:

Larger HBM2 memory, with higher bandwidth (
Much larger L2 cache, with residency control

Compute Data Compression

Async Copy to load data directly to shared memory

New alternative Floating-Point formats

3rd Generation Tensor Core

MEMORY HIERARCHY

Understanding Memory and Caches

1.55TB/s

New!
LDGSTS

108 SMs

i <ANVIDIA.

MEMORY HIERARCHY

Shared Memory

Shared memory traffic is always local to the SM

New!
LDGSTS

PCle, NVLINK

MEMORY HIERARCHY

Write Patterns

L1 is write-through, L2 is write-back
Writes will always reach at least L2, Read After Write can hit in L1 (e.g. register spills)

New!
LDGSTS

PCle, NVLINK 5 <nviDIA.

MEMORY HIERARCHY

Read Patterns

Reading from local / Global Mem can hit in L1 or L2

New!
LDGSTS

PCle, NVLINK 6 <INVIDIA

MEMORY HIERARCHY

System (Host) Memory

L2 does not cache System Memory*

h

New!
LDGSTS

* (exception: IBM Power9 with ATS)
System Memory (through PCle) 7 nviDia

MEMORY TRANSACTIONS

Cache lines and sectors

Cache line size = 128 Bytes
Minimum memory transaction unit = 1 sector = 32 Bytes

For each warp: How many sectors are needed?

Since V100: default transaction size from DRAM -> L2 = 64 Bytes = 2 sectors

128-Byte aligned
!

Sector 0 | Sector 1 Sector 2 | Sector 3

N 59
o aff]

128 Byte cache line 8 AnviDiA.

MEMORY TRANSACTIONS

Cache lines and sectors

Cache line size = 128 Bytes
Minimum memory transaction unit = 1 sector = 32 Bytes

For each warp: How many sectors are needed?

Since V100: default transaction size from DRAM -> L2 = 64 Bytes = 2 sectors

31

128-Byte aligned
!

Sector 0 | Sector 1 Sector 3

N 59
o aff]

128 Byte cache line) AnviDiA.

MEMORY TRANSACTIONS

Cache lines and sectors

Cache line size = 128 Bytes

Minimum memory transaction unit = 1 sector = 32 Bytes

For each warp: How many sectors are needed?

Since V100: default transaction size from DRAM -> L2 = 64 Bytes = 2 sectors

31

128-Byte aligned
!

Sector 0

Sector 1 64B granularity:

N

i “prefetched” sector

128 Byte cache line 10

<ANVIDIA.

MEMORY TRANSACTIONS

L2 granularity

On A100, the granularity can be set to 32, 64 or 128 Bytes
Random accesses might prefer smaller granularity (minimize overfetch)
Larger granularity can act as a prefetch

E.g. cudaDeviceSetLimit (cudaLimitMaxL2FetchGranularity, 32)

0

WARP

128-Byte aligned
}
Sector 0 | Sector 1 Sector 3

N 59
o aff]

128 Byte cache line

11

<ANVIDIA.

TUNING FOR L2 CACHE

TUNING FOR L2 CACHE

Large L2 Cache with Residency Control

TUNING FOR L2 CACHE

L2 Cache reuse between CUDA thread blocks in a kernel

40 MB L2 Cache

14 <ANVIDIA.

TUNING FOR L2 CACHE

L2 Cache reuse between CUDA thread blocks in a kernel

40 MB L2 Cache

15 <ANVIDIA.

TUNING FOR L2 CACHE

L2 Cache re use between kernel launches

Typical case where Global memory is used as data staging buffer, between producer -
consumer kernel launches

kernel1 l kernel2 kernel3

16 <ANVIDIA.

TUNING FOR L2 CACHE

L2 Cache re use between kernel lauches

The usual cache blocking techniques are now more effective on A100, especially when coupled
with CUDA Graphs.

L2 Cache L2 Cache L2 Cache

N + M + 8§

kernel1 kernel1 kernel1
+ kernel2 + kernel2 + kernel2

+ kernel3 + kernel3 + kernel3

4 <ANVIDIA.

TUNING FOR L2 CACHE

L2 residency controls

« A part of L2 cache to be set-aside for persistent data accesses.
» Persistent accesses has higher residence priority in L2 cache over other data accesses.

* Normal accesses can use the set-aside region of L2 when persisting accesses are not using it.

cudaDeviceSetLimit(cudaLimitPersistingL2CacheSize, user_requested_size);

20 MB L2 for persisting
accesses

*MB = (1024 * 1024) bytes 18 <ANVIDIA.

TUNING FOR L2 CACHE

Setting Persistence on Global Memory Data Region

« Global memory region can be marked for persistence access using accessPolicy\Window

« Subsequent kernel launches in the stream or Cuda graph have persistence property on the marked
data region.

cudaStreamAttrValue attribute; data_ptr
auto &window = attribute.accessPolicyWindow; l

window.base ptr = data_ptr;
window.num_bytes = num_bytes; num_bytes
window.hitRatio = 1.0;

window.hitProp = cudaAccessPropertyPersisting;
window.missProp = cudaAccessPropertyStreaming;

cudaStreamSetAttribute(stream,

cudaStreamAttributeAccessPolicyWindow, &attribute); L2 for
cuda_kernel<<<grid_size,block_size,0,stream>>>(data_ptr); persisting

accesses

For more detailed API: S21170 (Carter Edwards) Snvioia

TUNING FOR L2 CACHE

Resetting L2

* Reset does not evict but changes the persistent property of data in L2 cache to normal.

+ Two reset techniques:
1. Global reset: cudaCixResetPersistingL2Cache()

2. Reset using Access Window Hit property: Set cudaAccessPropertyPersisting to cudaAccessPropertyNormal

Note: If you enable L2 Persistence, don’t forgot to reset it.

128-byte L2 Cache line (persistent)

128-byte L2 Cache line (persistent)

20 <ANVIDIA.

TUNING FOR L2 CACHE

Global Memory Histogram

* More frequently accessed histogram bins stay pinned in L2.
 Increases hit rate for global memory atomics

Histogram

__global__ void histogram(int *hist, int *data, int nbins) {

int tid = blockldx.x * blockDim.x + threadldx.x;
int bin_id = data[tid];

// Performing atomics in global memory
atomicAdd(hist + bin_id, 1);

21 <ANVIDIA.

TUNING FOR L2 CACHE

Global Memory Histogram

« Dataset Size = 1024 MB* (256 Million integers)

« Size of Persistent Histogram bins = 20 MB* (5 Million integer bins)

m Speed up

A100 + L2 residency control

5] <ANVIDIA.

TUNING FOR L2 CACHE

Limits for NVIDIA A100 GPU

Maximum Global Memory Window Size

128 MB Global Memory

Maximum L2
Set-aside size

L2 Cache Size

23

<ANVIDIA.

TUNING FOR L2 CACHE

Understanding Hit Ratio using Sliding window test

Increase window size from 10MB to 60MB __global__ void kernel(int *data_persistent, int *data_streaming, int

dataSize, int freqSize) {
Normal accesses can use set-aside L2, when available int tid = blockldx.x * blockDim.x + threadldx.x:

Each thread reads and writes one element in both frequent access

buffer as well as streaming buffer
data_streaming[tid % dataSize] = 2 * data_streaming[tid % dataSize];

10MB - 60MB 3

Mp—

1024 MB

30 MB L2 for persisting accesses

24 <ANVIDIA.

TUNING FOR L2 CACHE

Sliding window test, Fixed Hit Ratio of 1.0

window.num_bytes = frequent_data_size; // (10 - 60) MB
window.hitRatio = 1.0; /I Always 1.0

Sliding Window Test Performance

Frequent access data fits in L2 set-aside Frequent access data does not fit in L2 set-aside

Performance drop due to Cache
Thrashing

I R

Size of Frequent Access Data

30

25 <ANVIDIA.

TUNING FOR L2 CACHE

Sliding window test, Fixed Hit Ratio of 1.0

window.num_bytes = frequent_data_size; // (10-60) MB

data_in_cache = 20 * 1024 * 1024; /[20 MB

window.hitRatio = min (1.0 , data_in_cache / frequent _data_size); // Fraction of frequent data
Sliding Window Test Performance

Frequent access data fits in L2 set-aside Frequent access data does not fit in L2 set-aside

Adjusting Hit Ratio reduces
Thrashing

I/ lI_\l

Size of Frequent Access Data

30

26 <ANVIDIA.

TUNING FOR L2 CACHE

Accurate profiling for L2 Cache between consecutive kernels

Cache flush prevents measuring caching effect between consecutive kernels

To measure caching between consecutive kernels:
* Turn off profiler cache control

* Run a dedicated experiment for L2 caching (no replays)

ncu —cache-control none -metrics lts_t request hit rate.pct

*ncu is the command line version of Nsight Compute
27 <SANVIDIA.

* COMPUTE DATA COMPRESSION

COMPUTE DATA COMPRESSION

Hardware Memory Compression

NVIDIA A100 can compress your data in memory, with ratios up to 4x!

Saving bandwidth and L2 cache footprint

(1x) / 2x / 4x compression

Decompression

29 <ANVIDIA.

COMPUTE DATA COMPRESSION

How it works

2 consecutive cache lines (8 sectors) can be compressed 2x (4 sectors) or 4x (2 sectors)

Data with enough zero or similar bytes will be compressed (lossless)

Data must be allocated with cuMemMap driver API

cuMemCreate + CU_MEM_ALLOCATION_COMP_GENERIC

Compression does not reduce global memory footprint
HW used for the compression is sensitive to access patterns

Use Nsight Compute to check compression ratios and performance!

30

<ANVIDIA.

// Fixed number of thread blocks,

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

loop until the end of the array

__global__ void saxpy loop(float a, float4 *x, floatd4 *y, floatd *z, int64 t n)

{

}

int64_t index = blockIdx.x * blockDim.x + threadIdx.x;

for (int64_t i = index; i1 < n; i += blockDim.x * gridDim.x)

z[1i] = make float4(a X[i].x + y[i].x,
Fev[il.z,

+ ylil.w);

a
a

b-l [l | =
sel1] .

* X

e Ul oy Y]y
* Z
* A

// Each thread computes 1 element, launching as many blocks as needed

{

global__ void saxpy_single(float a, float4 *x, float4d +*y,

int64_t i = blockIdx.xz * blockbim: < il iiicha =
if (i >= n) EckuEnE
z[1i] = make float4(a x[di)eonataazfii] ca

x[1]-vat i]

x[1i).z & i)

x[i].w £ i) o

Flgal=d ez int64 €t n)

31

<ANVIDIA.

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

Running saxpy on 3 x 1.6 GB vectors, arrays initialized to 1.0, with 1024 threads / block

Visualizing the access patterns on these long vectors:

Running saxpy_loop with a number of blocks that can all reside in the GPU at the same time (1 wave)

B0 | BX | B0 __BX B0 __BX | B0 __BX B0 __BX | B0 __BX B0

17 <ANVIDIA.

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

Running saxpy on 3 x 1.6 GB vectors, arrays initialized to 1.0, with 1024 threads / block

Visualizing the access patterns on these long vectors:

Running saxpy_loop with a number of blocks that can all reside in the GPU at the same time (1 wave)

B0 | BX | B0 __BX B0 __BX | B0 __BX B0 __BX | B0 __BX B0

Running saxpy_loop with more blocks than what can run at the same time (2+ waves)

15t wave 1t wave 15t wave

48 <ANVIDIA.

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

Running saxpy on 3 x 1.6 GB vectors, arrays initialized to 1.0, with 1024 threads / block

Visualizing the access patterns on these long vectors:

Running saxpy_loop with a number of blocks that can all reside in the GPU at the same time (1 wave)

B0 | BX | B0 __BX B0 __BX | B0 __BX B0 __BX | B0 __BX B0

Running saxpy_loop with more blocks than what can run at the same time (2+ waves)

B0 __Bi | Bisl B0 __Bi | Bisl B0 __Bi | Bitl

15t wave 2" wave 1st wave 2" wave 15t wave

34 <ANVIDIA.

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

Running saxpy on 3 x 1.6 GB vectors, arrays initialized to 1.0, with 1024 threads / block

Visualizing the access patterns on these long vectors:

Running saxpy_loop with a number of blocks that can all reside in the GPU at the same time (1 wave)

B0 | BX | B0 __BX B0 __BX | B0 __BX B0 __BX | B0 __BX B0

Running saxpy_loop with more blocks than what can run at the same time (2+ waves)

B0 __Bi | Bisl B0 __Bi | Bisl B0 __Bi | Bitl

15t wave 2" wave 1st wave 2" wave 15t wave

Running saxpy_single, launching N/1024 thread blocks
| B0 8/ /! '/ / /' ' ' [/ [! [| | | |

15t wave

35 <ANVIDIA.

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

Running saxpy on 3 x 1.6 GB vectors, arrays initialized to 1.0, with 1024 threads / block

Visualizing the access patterns on these long vectors:

Running saxpy_loop with a number of blocks that can all reside in the GPU at the same time (1 wave)

B0 | BX | B0 __BX B0 __BX | B0 __BX B0 __BX | B0 __BX B0

Running saxpy_loop with more blocks than what can run at the same time (2+ waves)

B0 __Bi | Bisl B0 __Bi | Bisl B0 __Bi | Bitl

15t wave 2" wave 1st wave 2" wave 15t wave

Running saxpy_single, launching N/1024 thread blocks
| B0 | Bi | Bitl ./ ' ' ' '/ '/ | [[[|

N

15t wave 2" wave

36 <ANVIDIA.

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

Without compression:

Effective BW
saxpy_loop, 108 blocks 1.38 TB/s
saxpy_loop, 216 blocks 1.38 TB/s
saxpy_loop, 4000 blocks 1.38 TB/s

saxpy_single, 102400 blocks 1.38 TB/s

a7 <ANVIDIA.

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

Without compression:

saxpy_loop, 108 blocks

saxpy_loop, 216 blocks

saxpy_loop, 4000 blocks
saxpy_single, 102400 blocks

With compression turned on:

Effective BW
1.38 TB/s
1.38 TB/s
1.38 TB/s
1.38 TB/s

saxpy_loop, 108 blocks 1.96 ms

Effective BW
2.56 TB/s

<ANVIDIA.

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

Without compression:

Effective BW
saxpy_loop, 108 blocks 1.38 TB/s
saxpy_loop, 216 blocks 1.38 TB/s
saxpy_loop, 4000 blocks 1.38 TB/s

saxpy_single, 102400 blocks 1.38 TB/s

With compression turned on:

Effective BW
saxpy_loop, 108 blocks 1.96 ms 2.56 TB/s
saxpy_loop, 216 blocks 3.13 ms 1.60 TB/s

<ANVIDIA.

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

Without compression:

Effective BW
saxpy_loop, 108 blocks 1.38 TB/s
saxpy_loop, 216 blocks 1.38 TB/s
saxpy_loop, 4000 blocks 1.38 TB/s

saxpy_single, 102400 blocks 1.38 TB/s

With compression turned on:

Effective BW
saxpy_loop, 108 blocks 2.56 TB/s
saxpy_loop, 216 blocks 1.60 TB/s
saxpy_loop, 4000 blocks 0.13 TB/s

<ANVIDIA.

COMPUTE DATA COMPRESSION

Access patterns : SAXPY test

Without compression:

saxpy_loop, 108 blocks

saxpy_loop, 216 blocks

saxpy_loop, 4000 blocks
saxpy_single, 102400 blocks

With compression turned on:

Effective BW
1.38 TB/s
1.38 TB/s
1.38 TB/s
1.38 TB/s

saxpy_loop, 108 blocks

saxpy_loop, 216 blocks

saxpy_loop, 4000 blocks
saxpy_single, 102400 blocks

Effective BW
2.56 TB/s
1.60 TB/s
0.13 TB/s

> 2X speedup

41

<ANVIDIA.

COMPUTE DATA COMPRESSION

Experiment: Reverse Time Migration

Wave equation modeling in isotropic model

P, w(X,y,2) =2 *P.(x,y,2) — P, 4(xy,2)+ VP.(x,y,2) * Velocity?*(x,y, z) * dt?

Bandwidth-bound code

The wavefield contains lots of zeroes, especially the first time steps
\

_| J \\\\\\\\\

42 <ANVIDIA.

COMPUTE DATA COMPRESSION

Experiment: Reverse Time Migration

Optimizing the RTM kernel to use compression
* Replaced cudaMalloc with cuMemMap+cuMemCreate (driver API)

* Trying to access more contiguous cache lines per warp

* Modified access pattern to get better locality between resident blocks in GPU

X} <ANVIDIA.

COMPUTE DATA COMPRESSION

Experiment: Reverse Time Migration

Original parallelization:
XY plan decomposed with 2D thread blocks
1 thread block
Using square block size (32 x 32) threads

Each thread loops on all the Z elements
(large stride between Z elements)

44 <ANVIDIA.

COMPUTE DATA COMPRESSION

Experiment: Reverse Time Migration

1 thread block

Modifications

Block size (X,Y)
Changed from (32,32) to (128,8)

Adding blockldx.z dimension
Each thread loops on fewer Z elements

All the thread blocks with same blockldx.z
are accessing a more localized region of memory

45 <ANVIDIA.

COMPUTE DATA COMPRESSION

RTM Results

Comparing with best implementation without compression

RTM Speed (Gcells/s, higher is better)

A100 + Compression

46 <ANVIDIA.

COMPUTE DATA COMPRESSION

Time per iteration (lower is better) vs Simulation time, NVIDIA A100

|

Compression OFF

—1
w
£

=
)
£

LT
c
(=]

=
©
4
[
=

As the wave field expands
during simulation,
compression becomes less effective

Compression ON
Complex Velocity Model

Simulation Time (ms) 47 SANVIDIA.

Compression disabled

COMPUTE DATA COMPRESSION

86.51 M Inst

Memory Chart

112.33 M Req

0.00 Inst

16.78 M Req

0.00 Req

0.00 Inst

0.00 Inst

0.00 Req

0.00 Req

0.00 Req

68.16 M Inst

235.14 M Inst

0.00 Req

436.69 M Reqg

-
-

34.70 M Req

LYTEX
Cache 20.90 GB

L2 Cache

Hit Rate: 4.00 GB
17.56 %

———

Shared
Memory

Shared Memory

Hit Rate:
51.65 %

12.85 GB

3.99 GB

0.00B| |0.00B

L2
Compression

Ratio:
0.00

System Memory

Device Memory

<ANVIDIA.

Compression disabled

COMPUTE DATA COMPRESSION

86.51 M Inst

Memory Chart

112.33 M Req

0.00 Inst

16.78 M Req

0.00 Req

0.00 Inst

0.00 Inst

L1/TEX
0.00 Req Cache

20.90 GB

L2 Cache

Hit Rate:
0.00 Req 17.56 %

0.00 Req

68.16 M Inst

235.14 M Inst

0.00 Req

436.69 M Reqg
Shared

» Memory
34.70 M Req

Shared Memory

400 GB

Hit Rate:
51.65 %

@

| |

3.99 GB "

0.00B| |0.00B

L2
Compression

Ratio:
0.00

System Memory

Device Memory

<ANVIDIA.

COMPUTE DATA COMPRESSION

Memory Chart

86.51 M Inst 112.33 M Req

16.78 M Req

0.00 Inst 0.00 Regq

System Memory

L1/TEX

Cache 20.90 GB L2 Cache

0.00 Req

Hit Rate:

Hit Rate: o
0.00 Inst 0.00 Reg 1716 % Ly 63.32 %

Compression enabled

0.00 Inst 0.00 Req

Device Memory

0.00 Req

Higher L2 hit rate 41568 |10468
68.16 M Inst

Reduced Mem BW)

Compression

4x compression! 23514 M Inst o et E— Ratio:

» Memory 4.00

35.14 M Req

Shared Memory SANVIDIA.

ASYNC COPY

ASYNC COPY

Asynchronous load + store in shared Memory

Typical way of using shared memory:

__shared int smem[1024]; LDG.E.SYS RO, [R2] ;

smem[threadIdx.x] = input[index];

STS [R5], RO ;

5 <ANVIDIA.

ASYNC COPY

Asynchronous load + store in shared Memory
Typical way of using shared memory:

__shared int smem[1024]; LDG.E.SYS RO, [R2] ;

smem[threadIdx.x] = input[index];

STS [R5], RO ;

-: ; Wasting registers

- Stalling while the data is loaded

Wasting L1/SHM bandwidth

53

<ANVIDIA.

ASYNC COPY

Asynchronous load + store in shared Memory

__shared int smem[1024];
__pipeline memcpy async(&smem[threadIdx.x], &input[index], sizeof(int));

__pipeline commit();
__pipeline wait prior(0);

Copies the data straight to shared memory asynchronously with 2
possible paths:

* L1 Access (Data gets Cached in L1)

* L1 Bypass (No L1 Caching, 16-Byte vector LDGSTS)

Very flexible scheduling (e.g. multi-stage)

For more details: S21170 (Carter Edwards)

54 <ANVIDIA.

ASYNC COPY

Using Async Copy in TTI Reverse Time Migration

Loop through Z dimension
TTIl Radius 8 Reverse Time Migration (1-pass) __syncthreads ()

__syncthreads()
Couldn’t quite reach Speed Of Light

Compute Y and YY derivatives
High register pressure Compute Z derivatives

Low occupancy (1 block of 384 threads per SM) Share Y and Z derivatives (SHM)
__syncthreads()

Sl e neore computation

Write results

End loop

55 <ANVIDIA.

ASYNC COPY

Using Async Copy in TTI Reverse Time Migration

Loop through Z dimension

__syncthreads()

Using the data which was just loaded

Expensive load + sync (long wait, no other block in the SM)

Compute Z derivatives

Can’t easily prefetch the data for the next iteration , :
Share Y and Z derivatives (SHM)

even more registers
(g) __syncthreads()
. A lot more computation

Write results

End loop

56 <ANVIDIA.

ASYNC COPY

Using Async Copy in TTI Reverse Time Migration

Loop through Z dimension

Using a single stage Async Copy pipeline Wait for Async Copy

Just prefetching next iteration’s data __syncthreads()

Not using the L1 bypass Compute Y and YY derivatives
__syncthreads()

AsyncCopy Load data for next iter
Compute Z derivatives

Share Y and Z derivatives (SHM)
__syncthreads()

... A lot more computation

Write results

End loop

57 <ANVIDIA.

ASYNC COPY

Using Async Copy in TTI Reverse Time Migration

Loop through Z dimension

Using a single stage Async Copy pipeline Wait for Async Copy

Just prefetching next iteration’s data __syncthreads()

Not using the L1 bypass Compute Y and YY derivatives
__syncthreads()

TTI RTM Speedup vs V100 :
AsyncCopy Load data for next iter
+28% Compute Z derivatives

Share Y and Z derivatives (SHM)
__syncthreads()

... A lot more computation

Write results

End loop
A100 A100 + AsyncCopy 58 <INVIDIA.

ASYNC COPY

TTI RTM: What Nsight Compute says

Great improvement for the 2 major stall reasons,
syncthreads and memory loads

ﬂ Warp State (All Cycles)

Stall Barrier

Stall Long Scoreboard

Selected

Stall MIO Throttle

Stall Wait

Original code

Stall Not Selected

Stall Math Pipe Throttle

Lower is better AL Asnc Copy B

59 <ANVIDIA.

_ ALTERNATE FLOATING-POINT
FORMATS

New! TF32

New! BFLOAT16

FLOATING-POINT FORMATS

Native FP formats in A100

11-bit exponent

52-bit mantissa

8-bit exponent

23-bit mantissa

8-bit exponent

10-bit mantissa

8-bit exponent

7-bit mantissa

10-bit mantissa

61

<ANVIDIA.

FLOATING-POINT FORMATS

Reduced precision benefits

Reduce memory footprint
Reduce memory bandwidth

More FLOPS/ byte

Compute units that have higher peak FLOPS capabilities

62 <ANVIDIA.

FP FORMATS

A100 Capabilities

TensorCore Max val
TFlops

Smallest normal > 0

Smallest inc. to
1.0

FP64

19.5 ~ 1.8 x 10308

~ 2.2 x 10-3%

~ 2.2 x 107

FP32

~ 38
156 (312)° ~ 3.4x10

~1.2x 1038

~ 1.2 x 107

FP16

312 (624) 65504

~ 6.1 x107°

~ 9.8 x 10

BFLOAT16

312 (624)° ~ 3.3 x 1038

" With sparsity feature

~1.2x 1038

~7.8x1073

63 <ANVIDIA.

FP FORMATS

A100 Capabilities

TensorCore
TFlops

Max val

Smallest normal > 0

Smallest inc. to
1.0

FP64

19.5

~ 1.8 x 10308

~ 2.2 x 10-3%

~ 2.2 x 107

FP32

156 (312)"

~ 3.4 x 10%

~1.2x 1038

~ 1.2 x 107

FP16

312 (624)°

65504

~ 6.1 x107°

~ 9.8 x 10

BFLOAT16

312 (624)°

~ 3.3 x 1038

~1.2x 1038

~7.8x1073

Vector Flops using __half2 / __nv_bfloat162

" With sparsity feature

64 <ANVIDIA.

FP FORMATS

A100 Capabilities

TensorCore
TFlops

Max val

Smallest normal > 0

Smallest inc. to
1.0

FP64

19.5

~ 1.8 x 10308

~ 2.2 x 10-3%

~ 2.2 x 107

FP32

156 (312)"

~ 3.4 x 10%

~1.2x 1038

~ 1.2 x 107

FP16

312 (624)

65504

~ 6.1 x107°

~ 9.8 x 10

BFLOAT16

312 (624)
-

~ 3.3 x 1038

" With sparsity feature

~1.2x 1038

~7.8x1073

65 <ANVIDIA.

VIII I I I I I Il

NVIDIA A100 Tensor Core INT8

VI I I I I I 11l]]

(KX 1222222222222,
(A{122222222222%)

NVIDIAV100 INT8

o
S
—
<
2
=

S
z

(%2

>
o
S
=
>
T
=

>
z

NVIDIA A100 Tensor Core FP16

Ve
L
o d
O
O
ad
O
2
Z
Ll
—
Z
O
s
L
Z
Ll
O
Q
o
.
_I

NVIDIA V100 Tensor Core FP16

THIRD GENERATION TENSOR CORES

NVIDIA V100 vs NVIDIA A100

NVIDIA V100 FP32 NVIDIA A100 Tensor Core TF32 NVIDIA V100 FPé4 NVIDIA A100 Tensor Core FPé4

o239
l -

g P
ﬁ.i

<>

<ANVIDIA.

THIRD GENERATION TENSOR CORES

Warp Wide Double Precision Tensor Core (DMMA)

A Matrix
8x4
FP64

D =

D Matrix
8 x8
FP64

Boo Bo1 Bo2 Bo3 Bos4 Bos Bos Bogz
Bi,e Bi1,7
B2,6

Bs,6

B Matrix
4x8
FP64

e C

C Matrix
8x8
FP64

69

<ANVIDIA.

THIRD GENERATION TENSOR CORE

DGEMM Performance using FP64 Tensor Core

V100 A100

cuBLAS DGEMM Performance. Matrix Dimensions M = 4096, N = 4096, K =4096

70 <ANVIDIA.

THIRD GENERATION TENSOR CORES

Particle in Cell

* Thread Block level GEMM using CUDA WMMA API

* The governing equation for particle velocity in magnetic
field is given by:

dv q

dt :m(VXB) '

v = velocity,q = charge,m = mass, B = magnetic field

Gather by magnetic forces from the cell

vertices.
*Ref: https://www.particleincell.com/2011/vxb-rotation/

71 <ANVIDIA.

https://www.particleincell.com/2011/vxb-rotation/

THIRD GENERATION TENSOR CORES

Expressing algorithms as small matrix product to leverage Tensor Cores

m Speed up

b

1l

V100 Double Precision A100 Double Precision A100 Double Precision Tensor Core

i <ANVIDIA.

CONCLUSION

Lots of new features in A100!

40 GB of HBM2, with 1.55 TB/s Memory Bandwidth
40 MB L2 Cache + L2 Residency Control to improve L2 efficiency
Compute Data Compression can increase your effective bandwidth

192 KB of combined L1/Shared Memory + Async Copy helps hide latencies

More FP format choices, faster 39 Gen Tensor Core support across all formats

Not an extensive list! See other GTC’20 Talks!

7 <ANVIDIA.

NVIDIA

