
Michael Andersch, Valerie Sarge, Paulius Micikevicius

NVIDIA

TENSOR CORE
DL PERFORMANCE GUIDE

2

TENSOR CORES: BUILT TO ACCELERATE AI
Available on NVIDIA Volta and Turing Tensor Core GPUs

This talk: Learn basic guidelines to best harness the power of Tensor Core GPUs!

0

50

100

150

200

250

300

Tesla P100 (Pascal, no TC) Tesla V100 (Volta, TC) Titan RTX (Turing, TC)

P
ea

k
ar

it
h

m
et

ic
 t

h
ro

u
gh

p
u

t
[T

er
aO

P
S]

Inference TOPS [FP16 or INT8] Training TOPS [FP16]

3

OUTLINE

1. Tensor Core refresher – what, how, why?

2. Reasoning about Deep Learning performance

3. Guidelines for ideal Tensor Core performance

4. Case studies

4

TENSOR CORES: A REFRESHER
Introduced on NVIDIA Volta V100 GPU

Tensor Cores are …

… special hardware execution units

… built to accelerate deep learning

… executing matrix multiply operations

Volta Tensor Cores

FP16/FP16 and FP16/FP32 modes

Turing Tensor Cores

+ INT8/INT32, INT4/INT32, INT1/INT32

5

HOW TO USE TENSOR CORES FOR TRAINING

Tensor Core Optimized
Frameworks and Libraries

NVIDIA cuDNN, cuBLAS, TensorRT

Enable mixed precision training

S9143 - Mixed Precision Training of Deep Neural Networks

Easiest way: AMP

Automatic Mixed Precision

S9998 - Automatic Mixed Precision in PyTorch

S91003 – MxNet Models Accelerated with Tensor Cores

S91029 - Automated Mixed-Precision Tools for TensorFlow Training

This talk: How to maximize perf once MP is enabled

https://gputechconf2019.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=263102&tclass=popup
https://gputechconf2019.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=290414
https://gputechconf2019.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=293830&tclass=popup
TensorFlow: S91029 - Automated Mixed-Precision Tools for TensorFlow Training

6

DEEP LEARNING
PERFORMANCE

BASICS

7

DOES <X> USE TENSOR CORES?
Or: Am I using TCs effectively? AKA: “Only 50 TFLOPS?!”

8

GPU PERFORMANCE BASICS
The GPU: a highly parallel, scalable processor

GPUs have processing elements (SMs), on-chip
memories (e.g. L2 cache), and off-chip DRAM

Tesla V100: 125 TFLOPS, 900 GB/s DRAM

What limits the performance of a computation?

𝑡𝑖𝑚𝑒𝑚𝑎𝑡ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 > 𝑡𝑖𝑚𝑒𝑑𝑎𝑡𝑎 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡

𝐹𝐿𝑂𝑃𝑆

𝑚𝑎𝑡ℎ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
>

𝑏𝑦𝑡𝑒𝑠

𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝐹𝐿𝑂𝑃𝑆

𝑏𝑦𝑡𝑒𝑠
>

𝑚𝑎𝑡ℎ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

9

LIMITER ANALYSIS
Lesson 1: Understand your performance limiters

Math limited if:
𝐹𝐿𝑂𝑃𝑆

𝑏𝑦𝑡𝑒𝑠
>

𝑚𝑎𝑡ℎ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

Left metric is algorithmic mix of math and memory ops called arithmetic intensity

Right metric is the processor’s ops/byte ratio – e.g. V100 can execute 125/0.9=139 FLOPS/B

Comparing arithmetic intensity to ops/byte ratio indicates what algorithm is limited by!

Operation Arithmetic Intensity Limiter

Residual addition 0.166 Memory

ReLU activation 0.25 Memory

Batch normalization O(10) Memory

Convolution 1-10000+ Memory/Math

(assumes FP16 data)

10

HOW TO CHECK IF TENSOR CORES ARE USED
Simplest method: run GPU profiler

Run nvprof and look for [i|s|h][some numbers] in function names

volta_h884gemm_...

turing_fp16_s1688cudnn_fp16_...

But: not comprehensive

some kernels use TCs but don’t follow this naming scheme

no trivial mapping back to neural network operations

Useful as a first check: Am I using Tensor Cores, and are they close to being the top function?

11

END-TO-END PERFORMANCE
Lesson 2: Total Tensor Core speedup depends on memory limited time

CONV
BATCH

NORM

The end-to-end network speedup depends on layer mix

Amdahl’s law: if you speed up X% of your runtime, then the (1-X)% limit your overall speedup

RELU

execution time

6x

< 2x overall

FP16, without Tensor Cores

FP16, with Tensor Cores

12

GPU PERF BASICS: SUMMARY
Before we dig into the details

Tensor Cores accelerate processing (not memory) by providing higher matrix math throughput

Rules of thumb to remember

1. Check arithmetic intensity against GPU ops/byte ratio to see if math or memory limited

2. End-to-end speedup from Tensor Cores depends on operation mix in the neural network

3. Use nvprof as a quick check to see if you are using Tensor Cores at all

13

TENSOR CORE PERF
GUIDELINES

14

TENSOR CORE ACCELERATION
Which operations do benefit?

Dot product operations

GEMMs (Dense/Linear/FullyConnected/…)

Convolutions

RNN/LSTM/GRU/…

Can be thought of as matrix-matrix multiplications

Arithmetic intensity = MNK/(MK+KN+MN)

E.g. MxNxK = 4096x4096x4096: Arith. Intensity = 1365

But: becomes BW bound if any dimension is small

A

B

CM

K

K

N

N

M

(GEMM)

15

DNN OPERATION MAPPING TO GEMM
Forward pass mappings

weights

acti-

vation

outoutput
features

input features

input
features

batch

Fully Connected / Dense / Linear

(PyTorch nn.Linear, TensorFlow swaps A and B)

activation

filter

out

batch
x

image height
x

image width

input channels x filter
height x filter width

input channels x filter
height x filter width

output channels

Convolution
(implicit GEMM algorithm,

matrices are never actually created)

M =

N =

K =

K = K =

K =

M =

N =

16

BACKGROUND: TC-ACCELERATED GEMM
Output matrix partitioned into thread block tiles

GPUs execute work by mapping computation to threads

Threads are grouped into thread blocks to cooperate

Thread blocks are scheduled onto GPU SMs

GEMM algorithm: blocks produce output matrix tiles

Tiles require alignment for efficient access

If problem cannot be tiled cleanly, perf is lost

Smaller tiles are less efficient

17

FUNCTIONAL REQUIREMENTS
Multiple-of-8 and multiple-of-16 rule

Choose layer sizes as multiple of 8 (FP16) or 16 (INT8)

Linear: inputs, outputs, batch size

Convolution: input/output channels

RNNs: hidden, embedding, batch, vocabulary

Tensor Core speeds require efficient aligned data
accesses to keep the cores fed

Hardware uses CUDA cores as fallback

4-8x slower than Tensor Cores

(Tesla V100-DGXS-16GB, cuBLAS 10.1)

18

PARALLELIZATION: TILE QUANTIZATION
Dimensions quantize to tile boundaries

When the problem size does not cleanly divide into tiles, performance is lost

128

128

64

64

129

128

64

64

best case
4/4 tiles used

100% utilization

not-so-great case
~4/6 tiles used
67% utilization

19

PARALLELIZATION: TILE QUANTIZATION
Dimensions quantize to tile boundaries

When the problem size does not cleanly divide into tiles, performance is lost

Choosing dimensions to be multiples of 64 minimizes tile quantization (cuBLAS 10.1)

20

PARALLELIZATION: WAVE QUANTIZATION
Number of tiles quantizes to the GPU size

Tiles are assigned to SMs, so performance is ideal when number of tiles is a multiple of SM count

Example with 12 tiles on an 8-SM GPU, assuming 1 tile/SM
Second wave runs at 50% utilization

Overall computation runs at 75% utilization

21

PARALLELIZATION: WAVE QUANTIZATION
Number of tiles quantizes to the GPU size

Tiles are assigned to SMs, so performance is ideal when number of tiles is a multiple of SM count

It is useful to check the number of thread blocks created (by calculation or nvprof/nsight)

22

PARALLELIZATION: TILE EFFICIENCY
Larger tiles are more bandwidth efficient, larger K amortizes overhead

Tiles are just smaller GEMMs – same data reuse principles

When tile’s M and N are smaller …

… less data reuse is captured in the tile

… more external bandwidth is required

Also, when tile’s K is small …

… setup and teardown overheads dominate

In general, larger operations perform better

(Tesla V100-DGXS-16GB, cuBLAS 10.1)

23

TENSOR CORE PERFORMANCE GUIDELINES
If you only remember one slide from this presentation, use this one!

1. Satisfy requirements to enable Tensor Cores

• For linear layers: input size, output size, batch size need to be multiples of 8 (FP16) / 16 (INT8)

• For convolutions: input and output channel counts need to be multiples of 8 (FP16) /16 (INT8)

2. Ensure good Tensor Core GEMM efficiency

• Choose the above dimensions as multiples of 64/128/256

• (if the total number of tiles is small) Ensure that the tile count is a multiple of the SM count

3. Be aware of bandwidth limited regimes

• If any GEMM dimension is 128 or smaller, the operation is likely bandwidth limited

24

CASE STUDY:
TRANSFORMER

25

CASE STUDY: TRANSFORMER
From “Attention is all you need”

Transformers perform neural machine translation without
suffering from RNN dependencies

26

CASE STUDY: TRANSFORMER
From “Attention is all you need”

Transformers perform neural machine translation without
suffering from RNN dependencies

27

CASE STUDY: TRANSFORMER
From “Attention is all you need”

Step 1: Pad vocabulary to multiple of 8 to ensure TC usage in projection layer

Vocabulary size maps to M dimension in projection layer

0

10

20

30

40

50

60

70

80

90

100

forward activation grad weight grad

Th
ro

u
gh

p
u

t
[T

FL
O

P
S]

Transformer: Projection Linear layer, batch 5120

V=33708 V=33712

28

CASE STUDY: TRANSFORMER
From “Attention is all you need”

Step 2: Pad input sequence data to multiple of 8 to ensure TC usage in all other layers

Sequence length maps to M/N dimensions in attention layers

Sequence length * number of sentences maps to N dimension in most layers

0

20

40

60

80

100

forward activation grad weight grad

Th
ro

u
gh

p
u

t
[T

FL
O

P
S]

Transformer: Feed-Forward Network, first layer

tokens=4095 tokens=4096

29

CASE STUDY: TRANSFORMER
From “Attention is all you need”

Step 3: Choose token count per batch such that tile count is multiple of SM count (80 here)

E.g. 5120 instead of 4096, 2560 instead of 2048, …

0

20

40

60

80

100

forward activation grad weight grad

Th
ro

u
gh

p
u

t
[T

FL
O

P
S]

Transformer: Feed-Forward Network, first layer

batch=2048 batch=2560 batch=4096 batch=5120

30

SUMMARY

31

SUMMARY: TENSOR CORE GUIDELINES

Tensor Core GPUs provide considerable deep learning performance

Following a few simple guidelines can maximize delivered performance

Ensure key dimensions are multiples of 8 (FP16) or 16 (INT8)

Choose dimensions to avoid tile and wave quantization where possible

Up to a point, larger dimensions lead to higher efficiency

Visit the permanent online version of this guide (ETA early April)

https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html

https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html

32

RESOURCES

33

TENSOR CORES
For more information

Volta V100 whitepaper

Turing whitepaper

Mixed-precision training guide

Tensor Core technology webpage

Programming Tensor Cores blog post

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://www.nvidia.com/en-us/data-center/tensorcore/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

34

DNN OPERATION MAPPING TO GEMM
All pass mappings

Operation Phase GEMM “M” GEMM “N” GEMM “K

FC/Linear Forward Output features Batch size Input features

Data grad Input features Batch size Output features

Weight grad Input features Output features Batch size

Conv Forward Batch x iHeight x

iWidth

Output channels Input channels x

fHeight x fWidth

Data grad Batch x iHeight x

iWidth

Input channels Output channels x

fHeight x fWidth

Weight grad Input channels x

fHeight x fWidth

Output channels Batch x iHeight x

iWidth

35

TENSOR CORE THROUGHPUTS
On Volta and Turing GPUs (except TU11x), MACs/SM/CLK

CUDA Cores Tensor Cores

GPU FP64 FP32 FP16 INT8 FP16 INT8 INT4 INT1

Volta 32 64 128 256 512

Turing 2 64 128 256 512 1024 2048 8192

36

CONVOLUTION DATA LAYOUTS
With Tensor Cores, NHWC layout is faster than NCHW layout

4D tensor data can be laid out two ways

“channel-first” or NCHW

“channel-last” or NHWC

TC convolutions natively process NHWC tensors

NCHW data incurs an extra transpose

Native NHWC support in MxNet and TF (via XLA)

PyTorch support in development

Enable NHWC layout when possible (Tesla V100-DGXS-16GB, cuBLAS 10.1)

