
March 20, 2019

PROGRAMMING TENSOR CORES:
NATIVE VOLTA TENSOR CORES WITH CUTLASS

Andrew Kerr, Timmy Liu, Mostafa Hagog,

Julien Demouth, John Tran

PROGRAMMING TENSOR CORES IN CUDA

mma.sync (new instruction in CUDA 10.1)

Feeding the Data Path

CUTLASS 1.3 – Native Volta Tensor Cores GEMM

(March 20, 2019)

TENSOR CORES

Tensor Cores

• 8x speedup for mixed-precision matrix multiply

• Programmable via WMMA API (CUDA 9)

Direct access to Volta Tensor Cores: mma.sync (new instruction in CUDA 10.1)

• Maximum efficiency on Volta SM Architecture

• New in CUTLASS 1.3

91%
96%

92% 93% 97%
92%

98%
94%

79%
71%

78%

68%
63%

57%

71%

57%

0%

20%

40%

60%

80%

100%

F16 accum, NN F16 accum, NT F16 accum, TN F16 accum, TT F32 accum, NN F32 accum, NT F32 accum, TN F32 accum, TT

Pe
rf

o
rm

an
ce

 r
el

at
iv

e
to

 c
u

B
LA

S

Volta Tensor Cores - Performance Relative to cuBLAS
CUTLASS 1.3 - CUDA 10.1 - V100

mma WMMA

https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass

TENSOR CORES

This talk is about Volta Tensor Cores.

Warp-synchronous Matrix Multiply Accumulate

(WMMA API)

portable abstraction layer for Tensor Cores

91%
96%

92% 93% 97%
92%

98%
94%

79%
71%

78%

68%
63%

57%

71%

57%

0%

20%

40%

60%

80%

100%

F16 accum, NN F16 accum, NT F16 accum, TN F16 accum, TT F32 accum, NN F32 accum, NT F32 accum, TN F32 accum, TT

Pe
rf

o
rm

an
ce

 r
el

at
iv

e
to

 c
u

B
LA

S

Volta Tensor Cores - Performance Relative to cuBLAS
CUTLASS 1.3 - CUDA 10.1 - V100

mma WMMA

https://github.com/NVIDIA/cutlass

mma.sync

Direct access to Volta Tensor Cores

https://github.com/NVIDIA/cutlass

VOLTA MMA.SYNC

VOLTA MMA.SYNC

mma.sync: new instruction in CUDA 10.1

• Directly targets Volta Tensor Cores

Matrix multiply-accumulate

D = A * B + C

• A, B: half

• C, D: float or half

Warp-synchronous:

• Four independent 8-by-8-by-4 matrix
multiply-accumulate operations

Warp-scoped matrix multiply instruction

VOLTA MMA.SYNC

Warp is partitioned into Quad Pairs

• QP0: T0..T3 T16..T19

• QP1: T4..T7 T20..T23

• QP2: T8..T11 T24..T27

• QP3: T12..T15 T28..T31

(eight threads each)

Each Quad Pair performs one 8-by-8-by-4

matrix multiply

Warp-scoped matrix multiply instruction

COMPOSING MATRIX MULTIPLIES

Replicate data to compute warp-wide 16-by-16-by-4 matrix product

• A0..7: QP0,QP2 A8..15: QP1, QP3

• B0..7: QP0,QP1 B8..15: QP2, QP3

1 x mma.sync: 16-by-16-by-4

VOLTA MMA.SYNC D = A * B + C
PTX Syntax

mma.sync.aligned.m8n8k4.alayout.blayout.dtype.f16.f16.ctype d, a, b, c;

.alayout = {.row, .col};

.blayout = {.row, .col};

.ctype = {.f16, .f32};

.dtype = {.f16, .f32};

d: 8 x .dtype

a: 4 x .f16

b: 4 x .f16

c: 8 x .ctype

Note: .f16 elements must be packed into .f16x2

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma

THREAD-DATA MAPPING - F16 MULTIPLICANDS
Distributed among threads in quad pair (QP0 shown)

ROW-COL (“TN”)COL-ROW (“NT”)

mma.sync.aligned.m8n8k4.alayout.blayout.dtype.f16.f16.ctype d, a, b, c;

.alayout = {.row, .col};

.blayout = {.row, .col};

a: 2 x .f16x2
b: 2 x .f16x2

FEEDING THE DATA PATH

FEEDING THE DATA PATH
Efficiently storing and loading through shared memory

See CUTLASS GTC 2018 talk for more details about this model.

http://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf

CONFLICT-FREE ACCESS TO SHARED MEMORY
Efficiently storing and loading through shared memory

Bank conflicts between threads in the same phase

4B words are accessed in 1 phase

8B words are accessed in 2 phases:

• Process addresses of the first 16 threads in a warp

• Process addresses of the second 16 threads in a warp

16B words are accessed in 4 phases:

• Each phase processes 8 consecutive threads of a warp

Slide borrowed from: Guillaume Thomas-Collignon and Paulius Micikevicius. "Volta Architecture and performance optimization.” GTC 2018.

http://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

128 bit access size

http://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

FEEDING THE DATA PATH
Efficiently storing and loading through shared memory

Must move data from shared memory to registers as efficiently as possible

• 128 bit access size

• Conflict-free Shared Memory stores

• Conflict-free Shared Memory loads

MMA.SYNC GEMM: SPATIALLY INTERLEAVED

Accumulator tiles may not be contiguous

1 x mma.sync: 16-by-16-by-4

MMA.SYNC GEMM: SPATIALLY INTERLEAVED

4 x mma.sync: 32-by-32-by-4 (spatially interleaved)

THREAD-DATA MAPPING - F16 MULTIPLICANDS

COL-ROW (“NT”)

64 bits

SPATIALLY INTERLEAVED: 128 BIT ACCESSES

4 x mma.sync: 32-by-32-by-4 (spatially interleaved)

128 bit
vectors

low
64 bits

high
64 bits

high
64 bits

low
64 bits

FEEDING THE DATA PATH
Efficiently storing and loading through shared memory

Must move data from shared memory to registers as efficiently as possible

• 128 bit access size

• Conflict-free Shared Memory stores

• Conflict-free Shared Memory loads

GLOBAL MEMORY (CANONICAL)

GMEMStriped over
8 x 4 threads

SHARED MEMORY (PERMUTED)

Permuted layout SMEM

PERMUTED SHARED MEMORY TILES
Global Memory (column-major)

Shared Memory (permuted)

Load
(128 bits per

thread)

Store
(128 bits per

thread)

GMEM

SMEM

PERMUTED SHARED MEMORY TILES
T0 T1 T2 T3 T4 T5 T6 T7Phase 1

GMEM

SMEM

Load
(128 bits per

thread)

Store
(128 bits per

thread)

PERMUTED SHARED MEMORY TILES
T8 T9 T10 T11 T12 T13 T14 T15Phase 2

GMEM

SMEM

Load
(128 bits per

thread)

Store
(128 bits per

thread)

PERMUTED SHARED MEMORY TILES
T16 T17 T18 T19 T20 T21 T22 T23Phase 3

GMEM

SMEM

Load
(128 bits per

thread)

Store
(128 bits per

thread)

PERMUTED SHARED MEMORY TILES
T24 T25 T26 T27 T28 T29 T30 T31Phase 4

GMEM

SMEM

Load
(128 bits per

thread)

Store
(128 bits per

thread)

POINTER OFFSETS FOR PERMUTED SHARED MEMORY
Global Memory (column-major)

Shared Memory (permuted)

int lane = threadIdx.x % 32;

int c = lane % 8;
int s = lane / 8;

int smem_row = (c & 1) | ((c >> 1) & 2);
int bank = ((c << 1) & 4) | s ^ smem_row;

int smem_offset = smem_row * ldm_smem + bank;

int lane = threadIdx.x % 32;

int c = lane % 8;
int s = lane / 8;

int gmem_offset = c + s * lda;

FEEDING THE DATA PATH
Efficiently storing and loading through shared memory

Must move data from shared memory to registers as efficiently as possible

• 128 bit access size

• Conflict-free Shared Memory stores

• Conflict-free Shared Memory loads

CONFLICT-FREE SHARED MEMORY LOADS

T0 T1 T2 T3

QP0Phase 1

QP0

MMA0

CONFLICT-FREE SHARED MEMORY LOADS

T4 T5 T6 T7T0 T1 T2 T3

QP0 QP1Phase 1

QP0

MMA0

CONFLICT-FREE SHARED MEMORY LOADS

T12 T13 T14 T15T8 T9 T10 T11

QP2 QP3Phase 2

QP0

MMA0

CONFLICT-FREE SHARED MEMORY LOADS

T21 T20 T23 T22T17 T16 T19 T18

QP0 QP1Phase 3

QP0

MMA0

CONFLICT-FREE SHARED MEMORY LOADS

T29 T28 T31 T30T25 T24 T27 T26

QP2 QP3Phase 4

QP0

MMA0

FEEDING THE DATA PATH
Efficiently storing and loading through shared memory

Must move data from shared memory to registers as efficiently as possible

• 128 bit access size

• Conflict-free Shared Memory stores

• Conflict-free Shared Memory loads

CUTLASS 1.3

CUTLASS
CUDA C++ Template Library for Deep Learning

CUTLASS template library for GEMM computations

• Blocked structure to maximize data reuse

• Software pipelined to hide latency

• Conflict-free Shared Memory access to maximize data throughput See CUTLASS GTC 2018 talk.

http://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf

CUTLASS 1.3
Reusable components targeting Volta Tensor Cores

GlobalLoadIterator

Transformer

SharedStoreIterator

SharedTileLoadIterator MatrixMultiply
mma.sync

Transformer

SharedStoreIterator
SharedLoaditerator

GlobalLoadIterator
GlobalStoreIterator

Functor

GlobalLoadStream EpilogueWarp Matrix Multiply

STORING TO SHARED MEMORY

CUTLASS Tile Iterators to transform:

• Global Memory: Canonical matrix layout ➔ Shared Memory: permuted shared memory layout

cutlass/gemm/volta884_multiplicand.h

// Defines iterators for loading and storing multiplicands
template <

/// Identifies multiplicand of GEMM (A or B)
GemmOperand::Kind Operand,
/// Specifies layout of data in source memory
MatrixLayout::Kind Layout,
/// Specifies threadblock tile shape
typename Tile,
/// Specifies warp tile shape
typename WarpTile,
/// Specifies the number of participating warps
int WarpCount,
/// Specifies the delta between warp tiles
typename WarpDelta

>
struct Volta884Multiplicand {

//
// Thread-block load iterator (canonical matrix layout)
//
typedef ... LoadIterator;

//
// Thread-block store iterator (permuted SMEM layout)
//
typedef ... StoreIterator;

//
// Warp-level load iterator
//
typedef ... WarpLoadIterator;

};

LOADING FROM SHARED MEMORY

CUTLASS Tile Iterators to transform:

• Shared Memory: permuted shared memory layout ➔ Register File: mma.sync thread-data mapping

cutlass/gemm/volta884_multiplicand.h

// Defines iterators for loading and storing multiplicands
template <

/// Identifies multiplicand of GEMM (A or B)
GemmOperand::Kind Operand,
/// Specifies layout of data in source memory
MatrixLayout::Kind Layout,
/// Specifies threadblock tile shape
typename Tile,
/// Specifies warp tile shape
typename WarpTile,
/// Specifies the number of participating warps
int WarpCount,
/// Specifies the delta between warp tiles
typename WarpDelta

>
struct Volta884Multiplicand {

//
// Thread-block load iterator (canonical matrix layout)
//
typedef ... LoadIterator;

//
// Thread-block store iterator (permuted SMEM layout)
//
typedef ... StoreIterator;

//
// Warp-level load iterator
//
typedef ... WarpLoadIterator;

};

EXECUTING MMA.SYNC

CUTLASS Warp-scoped matrix multiply

• Register File: mma.sync thread-data mapping ➔ Tensor Cores: mma.sync

cutlass/gemm/volta884_multiply_add.h

template <
/// Shape of a warp-level GEMM (K-by-N-by-M)
typename WarpGemmShape_,
/// Layout of A multiplicand
MatrixLayout::Kind LayoutA,
/// Data type of A multiplicand
typename ScalarA,
/// Layout of B multiplicand
MatrixLayout::Kind LayoutB,
/// Data type of A multiplicand
typename ScalarB,
/// Data type of accumulators
typename ScalarC,
/// Whether infinite results are saturated to +-MAX_FLOAT
bool SatFinite = false

>
struct Volta884MultiplyAdd {

//
// Multiply : d = (-)a*b + c.
//
CUTLASS_DEVICE
void multiply_add(

FragmentA const& A,
FragmentB const& B,
Accumulators const& C,
Accumulators& D,
bool negate = false) {

...
}

};

SPEEDUP RELATIVE TO WMMA

1.06
1.10 1.10

1.25

1.37
1.41 1.42 1.43 1.43 1.44 1.44 1.45 1.45 1.45 1.46 1.46 1.46 1.46 1.47 1.47

1.50

1.61
1.66 1.67

1.71 1.71 1.73

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Sp
ee

d
u

p
Transformer - CUTLASS 1.3 - mma.sync speedup vs WMMA

V100 - CUDA 10.1

CONCLUSION
Volta Tensor Cores directly programmable in CUDA 10.1

• Complements WMMA API

• Direct access: mma.sync instruction for Volta Architecture

CUTLASS 1.3 (March 2019)

• CUDA C++ Template Library for Deep Learning

• Reusable components:

• mma.sync for Volta Tensor Cores

• Storing and loading from permuted shared memory

• Efficient epilogue for updating output matrix

• New kernels:

• Real- and complex-valued mixed precision GEMMs targeting Tensor Cores

• Parallelized reductions for mma.sync GEMM (first added in CUTLASS 1.2)

https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass

REFERENCES

CUTLASS source code: https://github.com/NVIDIA/cutlass

Volta Tensor Cores in CUDA

• mma.sync: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-
matrix-instructions-mma

• Matrix fragments: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-
level-matrix-fragment-mma

GEMM resources

• CUTLASS Parallel for All blog post

• GTC 2018 CUTLASS talk [video recording]

https://github.com/NVIDIA/cutlass
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-fragment-mma
https://devblogs.nvidia.com/parallelforall/cutlass-linear-algebra-cuda/
http://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf
http://on-demand.gputechconf.com/gtc/2018/video/S8854

QUESTIONS?

EXTRA MATERIAL

THREAD-DATA MAPPING – F16 ACCUMULATION
Accumulators distributed among threads (QP0 shown)

Quad Pair 0 Thread 0

mma.sync.aligned.m8n8k4.alayout.blayout.dtype.f16.f16.ctype d, a, b, c;

.ctype = {.f16, .f32};

.dtype = {.f16, .f32};

d: 4 x .f16x2
c: 4 x .f16x2

THREAD-DATA MAPPING – F32 ACCUMULATION
Accumulators distributed among threads (QP0 shown)

Quad Pair 0 Thread 0

mma.sync.aligned.m8n8k4.alayout.blayout.dtype.f16.f16.ctype d, a, b, c;

.ctype = {.f16, .f32};

.dtype = {.f16, .f32};

d: 8 x .f32
c: 8 x .f32

