
NVIDIA CUDA INSTALLATION GUIDE FOR
LINUX

DU-05347-001_v10.2 | October 2019

Installation and Verification on Linux Systems

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | ii

TABLE OF CONTENTS

Chapter 1. Introduction...1
1.1. System Requirements.. 1
1.2. About This Document.. 3

Chapter 2. Pre-installation Actions...4
2.1. Verify You Have a CUDA-Capable GPU.. 4
2.2. Verify You Have a Supported Version of Linux...5
2.3. Verify the System Has gcc Installed... 5
2.4. Verify the System has the Correct Kernel Headers and Development Packages Installed.... 5
2.5. Choose an Installation Method... 7
2.6. Download the NVIDIA CUDA Toolkit..7
2.7. Handle Conflicting Installation Methods.. 7

Chapter 3. Package Manager Installation..9
3.1. Overview... 9
3.2. Redhat/CentOS...10
3.3. Fedora... 11
3.4. SLES..12
3.5. OpenSUSE... 12
3.6. Ubuntu.. 13
3.7. Additional Package Manager Capabilities..13

3.7.1. Available Packages... 13
3.7.2. Package Upgrades..14
3.7.3. Meta Packages.. 14

Chapter 4. Runfile Installation...16
4.1. Overview.. 16
4.2. Installation..16
4.3. Installer UI..18
4.4. Disabling Nouveau...18

4.4.1. Fedora..19
4.4.2. RHEL/CentOS... 19
4.4.3. OpenSUSE..19
4.4.4. SLES.. 19
4.4.5. Ubuntu... 19

4.5. Device Node Verification...20
4.6. Advanced Options... 20
4.7. Uninstallation.. 22

Chapter 5. Cluster Management Packages...23
5.1. Overview.. 23

Chapter 6. CUDA Cross-Platform Environment... 24
6.1. CUDA Cross-Platform Installation... 24
6.2. CUDA Cross-Platform Samples...25

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | iii

TARGET_ARCH... 25
TARGET_OS.. 25
TARGET_FS...25

Cross Compiling to ARM architectures... 25
Copying Libraries.. 26

6.3. Nsight Eclipse Edition.. 26
Chapter 7. Post-installation Actions.. 27

7.1. Mandatory Actions...27
7.1.1. Environment Setup...27
7.1.2. POWER9 Setup..28

7.2. Recommended Actions..29
7.2.1. Install Persistence Daemon...29
7.2.2. Install Writable Samples.. 29
7.2.3. Verify the Installation... 29

7.2.3.1. Verify the Driver Version.. 29
7.2.3.2. Compiling the Examples... 30
7.2.3.3. Running the Binaries... 30

7.2.4. Install Nsight Eclipse Plugins...31
7.3. Optional Actions... 32

7.3.1. Install Third-party Libraries.. 32
7.3.2. Install the source code for cuda-gdb... 32

Chapter 8. Advanced Setup.. 33
Chapter 9. Frequently Asked Questions... 37

How do I install the Toolkit in a different location?.. 37
Why do I see "nvcc: No such file or directory" when I try to build a CUDA application?........... 37
Why do I see "error while loading shared libraries: <lib name>: cannot open shared object file:

No such file or directory" when I try to run a CUDA application that uses a CUDA library?... 37
Why do I see multiple "404 Not Found" errors when updating my repository meta-data on

Ubuntu?..38
How can I tell X to ignore a GPU for compute-only use?.. 38
Why doesn't the cuda-repo package install the CUDA Toolkit and Drivers?.......................... 38
How do I get CUDA to work on a laptop with an iGPU and a dGPU running Ubuntu14.04?........ 38
What do I do if the display does not load, or CUDA does not work, after performing a system

update?.. 39
How do I install a CUDA driver with a version less than 367 using a network repo?................39
How do I install an older CUDA version using a network repo?..39

Chapter 10. Additional Considerations...41
Chapter 11. Removing CUDA Toolkit and Driver... 42

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | iv

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 1

Chapter 1.
INTRODUCTION

CUDA® is a parallel computing platform and programming model invented by NVIDIA.
It enables dramatic increases in computing performance by harnessing the power of the
graphics processing unit (GPU).

CUDA was developed with several design goals in mind:

‣ Provide a small set of extensions to standard programming languages, like C, that
enable a straightforward implementation of parallel algorithms. With CUDA C/C++,
programmers can focus on the task of parallelization of the algorithms rather than
spending time on their implementation.

‣ Support heterogeneous computation where applications use both the CPU and
GPU. Serial portions of applications are run on the CPU, and parallel portions are
offloaded to the GPU. As such, CUDA can be incrementally applied to existing
applications. The CPU and GPU are treated as separate devices that have their own
memory spaces. This configuration also allows simultaneous computation on the
CPU and GPU without contention for memory resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of
computing threads. These cores have shared resources including a register file and a
shared memory. The on-chip shared memory allows parallel tasks running on these
cores to share data without sending it over the system memory bus.

This guide will show you how to install and check the correct operation of the CUDA
development tools.

1.1. System Requirements
To use CUDA on your system, you will need the following installed:

‣ CUDA-capable GPU
‣ A supported version of Linux with a gcc compiler and toolchain
‣ NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads)

The CUDA development environment relies on tight integration with the host
development environment, including the host compiler and C runtime libraries, and

http://developer.nvidia.com/cuda-downloads

Introduction

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 2

is therefore only supported on distribution versions that have been qualified for this
CUDA Toolkit release.

Table 1 Native Linux Distribution Support in CUDA 10.1 Update 2

Distribution Kernel* GCC GLIBC ICC PGI XLC CLANG

x86_64

RHEL 8.0 4.18 8.2.1 2.28

RHEL 7.6 3.10 4.8.5 2.17

RHEL 6.10 2.6.32 4.4.7 2.12

CentOS 7.6 3.10 4.8.5 2.17

CentOS 6.10 2.6.32 4.4.7 2.12

Fedora 29 4.16 8.0.1 2.27

OpenSUSE Leap 15.0 4.15.0 7.3.1 2.26

SLES 15.0 4.12.14 7.2.1 2.26

SLES 12.4 4.12.14 4.8.5 2.22

Ubuntu 18.10 4.18.0 8.2.0 2.28

Ubuntu 18.04.2 (**) 4.15.0 7.3.0 2.27

Ubuntu 16.04.6 (**) 4.4 5.4.0 2.23

19.0 18.x,
19.x NO 8.0.0

Ubuntu 14.04.6 (**) 3.13 4.8.4 2.19 — — — —

POWER8(***)

RHEL 7.6 3.10 4.8.5 2.17 NO 18.x,
19.x

13.1.x,
16.1.x 8.0.0

Ubuntu 18.04.1 4.15.0 7.3.0 2.27 NO 18.x,
19.x

13.1.x,
16.1.x 8.0.0

POWER9(****)

Ubuntu 18.04.1 4.15.0 7.3.0 2.27 NO 18.x,
19.x

13.1.x,
16.1.x 8.0.0

RHEL 7.6 IBM Power LE 4.14.0 4.8.5 2.17 NO 18.x,
19.x

13.1.x,
16.1.x 8.0.0

(*) For specific kernel versions supported on Red Hat Enterprise Linux, visit https://
access.redhat.com/articles/3078. For a list of kernel versions including the release dates
for SUSE Linux Enterprise Server is available at https://wiki.microfocus.com/index.php/
SUSE/SLES/Kernel_versions.

(**) For Ubuntu LTS on x86-64, both the HWE kernel (e.g. 4.13.x for 16.04.4) and the
server LTS kernel (e.g. 4.4.x for 16.04) are supported in CUDA 10.2. Visit https://
wiki.ubuntu.com/Kernel/Support for more information.

(***) Only the Tesla GP100 GPU is supported for CUDA 10.2 on POWER8.

(****) Only the Tesla GV100 GPU is supported for CUDA 10.2 on POWER9.

https://access.redhat.com/articles/3078
https://access.redhat.com/articles/3078
https://wiki.microfocus.com/index.php/SUSE/SLES/Kernel_versions
https://wiki.microfocus.com/index.php/SUSE/SLES/Kernel_versions
https://wiki.ubuntu.com/Kernel/Support
https://wiki.ubuntu.com/Kernel/Support

Introduction

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 3

1.2. About This Document
This document is intended for readers familiar with the Linux environment and
the compilation of C programs from the command line. You do not need previous
experience with CUDA or experience with parallel computation. Note: This guide covers
installation only on systems with X Windows installed.

Many commands in this document might require superuser privileges. On most
distributions of Linux, this will require you to log in as root. For systems that have
enabled the sudo package, use the sudo prefix for all necessary commands.

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 4

Chapter 2.
PRE-INSTALLATION ACTIONS

Some actions must be taken before the CUDA Toolkit and Driver can be installed on
Linux:

‣ Verify the system has a CUDA-capable GPU.
‣ Verify the system is running a supported version of Linux.
‣ Verify the system has gcc installed.
‣ Verify the system has the correct kernel headers and development packages

installed.
‣ Download the NVIDIA CUDA Toolkit.
‣ Handle conflicting installation methods.

You can override the install-time prerequisite checks by running the installer with
the -override flag. Remember that the prerequisites will still be required to use the
NVIDIA CUDA Toolkit.

2.1. Verify You Have a CUDA-Capable GPU
To verify that your GPU is CUDA-capable, go to your distribution's equivalent of System
Properties, or, from the command line, enter:

$ lspci | grep -i nvidia

If you do not see any settings, update the PCI hardware database that Linux maintains
by entering update-pciids (generally found in /sbin) at the command line and rerun
the previous lspci command.

If your graphics card is from NVIDIA and it is listed in http://developer.nvidia.com/
cuda-gpus, your GPU is CUDA-capable.

The Release Notes for the CUDA Toolkit also contain a list of supported products.

http://developer.nvidia.com/cuda-gpus
http://developer.nvidia.com/cuda-gpus

Pre-installation Actions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 5

2.2. Verify You Have a Supported Version of Linux
The CUDA Development Tools are only supported on some specific distributions of
Linux. These are listed in the CUDA Toolkit release notes.

To determine which distribution and release number you're running, type the following
at the command line:

$ uname -m && cat /etc/*release

You should see output similar to the following, modified for your particular system:

x86_64
Red Hat Enterprise Linux Workstation release 6.0 (Santiago)

The x86_64 line indicates you are running on a 64-bit system. The remainder gives
information about your distribution.

2.3. Verify the System Has gcc Installed
The gcc compiler is required for development using the CUDA Toolkit. It is not
required for running CUDA applications. It is generally installed as part of the Linux
installation, and in most cases the version of gcc installed with a supported version of
Linux will work correctly.

To verify the version of gcc installed on your system, type the following on the
command line:

$ gcc --version

If an error message displays, you need to install the development tools from your Linux
distribution or obtain a version of gcc and its accompanying toolchain from the Web.

2.4. Verify the System has the Correct Kernel
Headers and Development Packages Installed
The CUDA Driver requires that the kernel headers and development packages for
the running version of the kernel be installed at the time of the driver installation,
as well whenever the driver is rebuilt. For example, if your system is running kernel
version 3.17.4-301, the 3.17.4-301 kernel headers and development packages must also be
installed.

While the Runfile installation performs no package validation, the RPM and Deb
installations of the driver will make an attempt to install the kernel header and
development packages if no version of these packages is currently installed. However,
it will install the latest version of these packages, which may or may not match the
version of the kernel your system is using. Therefore, it is best to manually ensure the

Pre-installation Actions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 6

correct version of the kernel headers and development packages are installed prior to
installing the CUDA Drivers, as well as whenever you change the kernel version.

The version of the kernel your system is running can be found by running the following
command:

$ uname -r

This is the version of the kernel headers and development packages that must be
installed prior to installing the CUDA Drivers. This command will be used multiple
times below to specify the version of the packages to install. Note that below are the
common-case scenarios for kernel usage. More advanced cases, such as custom kernel
branches, should ensure that their kernel headers and sources match the kernel build
they are running.

If you perform a system update which changes the version of the linux kernel being
used, make sure to rerun the commands below to ensure you have the correct kernel
headers and kernel development packages installed. Otherwise, the CUDA Driver will
fail to work with the new kernel.

RHEL/CentOS

The kernel headers and development packages for the currently running kernel can be
installed with:

$ sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r)

Fedora

The kernel headers and development packages for the currently running kernel can be
installed with:

$ sudo dnf install kernel-devel-$(uname -r) kernel-headers-$(uname -r)

OpenSUSE/SLES

Use the output of the uname command to determine the running kernel's version and
variant:

$ uname -r
3.16.6-2-default

In this example, the version is 3.16.6-2 and the variant is default. The kernel headers
and development packages can then be installed with the following command, replacing
<variant> and <version> with the variant and version discovered from the previous
uname command:

$ sudo zypper install kernel-<variant>-devel=<version>

Pre-installation Actions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 7

Ubuntu

The kernel headers and development packages for the currently running kernel can be
installed with:

$ sudo apt-get install linux-headers-$(uname -r)

2.5. Choose an Installation Method
The CUDA Toolkit can be installed using either of two different installation mechanisms:
distribution-specific packages (RPM and Deb packages), or a distribution-independent
package (runfile packages). The distribution-independent package has the advantage of
working across a wider set of Linux distributions, but does not update the distribution's
native package management system. The distribution-specific packages interface with
the distribution's native package management system. It is recommended to use the
distribution-specific packages, where possible.

Standalone installers are not provided for architectures other than the x86_64
release. For both native as well as cross development, the toolkit must be installed
using the distribution-specific installer. See the CUDA Cross-Platform Installation
section for more details.

2.6. Download the NVIDIA CUDA Toolkit
The NVIDIA CUDA Toolkit is available at http://developer.nvidia.com/cuda-downloads.

Choose the platform you are using and download the NVIDIA CUDA Toolkit

The CUDA Toolkit contains the CUDA driver and tools needed to create, build and run
a CUDA application as well as libraries, header files, CUDA samples source code, and
other resources.

Download Verification

The download can be verified by comparing the MD5 checksum posted at http://
developer.nvidia.com/cuda-downloads/checksums with that of the downloaded
file. If either of the checksums differ, the downloaded file is corrupt and needs to be
downloaded again.

To calculate the MD5 checksum of the downloaded file, run the following:

$ md5sum <file>

2.7. Handle Conflicting Installation Methods
Before installing CUDA, any previously installations that could conflict should be
uninstalled. This will not affect systems which have not had CUDA installed previously,

http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/cuda-downloads/checksums
http://developer.nvidia.com/cuda-downloads/checksums

Pre-installation Actions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 8

or systems where the installation method has been preserved (RPM/Deb vs. Runfile). See
the following charts for specifics.

Table 2 CUDA Toolkit Installation Compatibility Matrix

Installed Toolkit Version == X.Y Installed Toolkit Version != X.Y

RPM/Deb run RPM/Deb run

RPM/Deb No Action Uninstall Run No Action No ActionInstalling
Toolkit

Version X.Y run Uninstall
RPM/Deb

Uninstall Run No Action No Action

Table 3 NVIDIA Driver Installation Compatibility Matrix

Installed Driver Version == X.Y Installed Driver Version != X.Y

RPM/Deb run RPM/Deb run

RPM/Deb No Action Uninstall Run No Action Uninstall RunInstalling Driver
Version X.Y

run Uninstall RPM/
Deb

No Action Uninstall RPM/
Deb

No Action

Use the following command to uninstall a Toolkit runfile installation:

$ sudo /usr/local/cuda-X.Y/bin/uninstall_cuda_X.Y.pl

Use the following command to uninstall a Driver runfile installation:

$ sudo /usr/bin/nvidia-uninstall

Use the following commands to uninstall a RPM/Deb installation:

$ sudo yum remove <package_name> # Redhat/CentOS
$ sudo dnf remove <package_name> # Fedora
$ sudo zypper remove <package_name> # OpenSUSE/SLES
$ sudo apt-get --purge remove <package_name> # Ubuntu

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 9

Chapter 3.
PACKAGE MANAGER INSTALLATION

Basic instructions can be found in the Quick Start Guide. Read on for more detailed
instructions.

3.1. Overview
The Package Manager installation interfaces with your system's package management
system. When using RPM or Deb, the downloaded package is a repository package.
Such a package only informs the package manager where to find the actual installation
packages, but will not install them.

If those packages are available in an online repository, they will be automatically
downloaded in a later step. Otherwise, the repository package also installs a local
repository containing the installation packages on the system. Whether the repository is
available online or installed locally, the installation procedure is identical and made of
several steps.

Distribution-specific instructions detail how to install CUDA:

‣ Redhat/CentOS
‣ Fedora
‣ SLES
‣ OpenSUSE
‣ Ubuntu

Finally, some helpful package manager capabilities are detailed.

These instructions are for native development only. For cross-platform development, see
the CUDA Cross-Platform Environment section.

The package "cuda-core" has been deprecated in CUDA 9.1. Please use "cuda-
compiler" instead.

http://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#linux

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 10

3.2. Redhat/CentOS
 1. Perform the pre-installation actions.
 2. Satisfy third-party package dependency:

‣ Satisfy DKMS dependency: The NVIDIA driver RPM packages depend on
other external packages, such as DKMS and libvdpau. Those packages are
only available on third-party repositories, such as EPEL. Any such third-party
repositories must be added to the package manager repository database before
installing the NVIDIA driver RPM packages, or missing dependencies will
prevent the installation from proceeding.

‣ Enable optional repos:

On RHEL 7 Linux only, execute the following steps to enable optional
repositories.

‣ On x86_64 workstation:

$ subscription-manager repos --enable=rhel-7-workstation-optional-
rpms

‣ On POWER9 system:

$ subscription-manager repos --enable=rhel-7-for-power-9-optional-
rpms

‣ On x86_64 server:

$ subscription-manager repos --enable=rhel-7-server-optional-rpms

 3. Address custom xorg.conf, if applicable

The driver relies on an automatically generated xorg.conf file at /etc/X11/xorg.conf.
If a custom-built xorg.conf file is present, this functionality will be disabled and the
driver may not work. You can try removing the existing xorg.conf file, or adding the
contents of /etc/X11/xorg.conf.d/00-nvidia.conf to the xorg.conf file. The xorg.conf
file will most likely need manual tweaking for systems with a non-trivial GPU
configuration.

 4. Install repository meta-data

$ sudo rpm --install cuda-repo-<distro>-<version>.<architecture>.rpm

 5. Clean Yum repository cache

$ sudo yum clean expire-cache

 6. Install CUDA

$ sudo yum install nvidia-driver-latest-dkms
$ sudo yum install cuda

 7. Add libcuda.so symbolic link, if necessary

The libcuda.so library is installed in the /usr/lib{,64}/nvidia directory. For pre-
existing projects which use libcuda.so, it may be useful to add a symbolic link from
libcuda.so in the /usr/lib{,64} directory.

 8. Perform the post-installation actions.

http://fedoraproject.org/wiki/EPEL

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 11

3.3. Fedora
 1. Perform the pre-installation actions.
 2. Address custom xorg.conf, if applicable

The driver relies on an automatically generated xorg.conf file at /etc/X11/xorg.conf.
If a custom-built xorg.conf file is present, this functionality will be disabled and the
driver may not work. You can try removing the existing xorg.conf file, or adding the
contents of /etc/X11/xorg.conf.d/00-nvidia.conf to the xorg.conf file. The xorg.conf
file will most likely need manual tweaking for systems with a non-trivial GPU
configuration.

 3. Satisfy Akmods dependency

The NVIDIA driver RPM packages depend on the Akmods framework which is
provided by the RPMFusion free repository. The RPMFusion free repository must
be added to the package manager repository database before installing the NVIDIA
driver RPM packages, or missing dependencies will prevent the installation from
proceeding.

 4. Install repository meta-data

$ sudo rpm --install cuda-repo-<distro>-<version>.<architecture>.rpm

 5. Clean DNF repository cache

$ sudo dnf clean expire-cache

 6. Install CUDA

$ sudo dnf install cuda

The CUDA driver installation may fail if the RPMFusion non-free repository is
enabled. In this case, CUDA installations should temporarily disable the RPMFusion
non-free repository:

$ sudo dnf --disablerepo="rpmfusion-nonfree*" install cuda

If a system has installed both packages with the same instance of dnf, some driver
components may be missing. Such an installation can be corrected by running:

$ sudo dnf install cuda-drivers

If the i686 libvdpau package dependency fails to install, try using the following
steps to fix the issue:

$ dnf download libvdpau.i686
$ sudo rpm -U --oldpackage libvdpau*.rpm

It may be necessary to rebuild the grub configuration files, particularly if you use a
non-default partition scheme. If so, then run this below command, and reboot the
system:

$ sudo grub2-mkconfig -o /boot/grub2/grub.cfg

Remember to reboot the system.

http://rpmfusion.org/Configuration

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 12

 7. Add libcuda.so symbolic link, if necessary

The libcuda.so library is installed in the /usr/lib{,64}/nvidia directory. For pre-
existing projects which use libcuda.so, it may be useful to add a symbolic link from
libcuda.so in the /usr/lib{,64} directory.

 8. Perform the post-installation actions.

3.4. SLES
 1. Perform the pre-installation actions.
 2. On SLES12 SP4, install the Mesa-libgl-devel Linux packages before proceeding. See

Mesa-libGL-devel.
 3. Install repository meta-data

$ sudo rpm --install cuda-repo-<distro>-<version>.<architecture>.rpm

 4. Refresh Zypper repository cache

$ sudo zypper refresh

 5. Install CUDA

$ sudo zypper install cuda

 6. Add the user to the video group

$ sudo usermod -a -G video <username>

 7. Install CUDA Samples GL dependencies

The CUDA Samples package on SLES does not include dependencies on GL and X11
libraries as these are provided in the SLES SDK. These packages must be installed
separately, depending on which samples you want to use.

 8. Perform the post-installation actions.

3.5. OpenSUSE
 1. Perform the pre-installation actions.
 2. Install repository meta-data

$ sudo rpm --install cuda-repo-<distro>-<version>.<architecture>.rpm

 3. Refresh Zypper repository cache

$ sudo zypper refresh

 4. Install CUDA

$ sudo zypper install cuda

 5. Add the user to the video group

$ sudo usermod -a -G video <username>

 6. Perform the post-installation actions.

https://pkgs.org/download/Mesa-libGL-devel

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 13

3.6. Ubuntu
 1. Perform the pre-installation actions.
 2. Install repository meta-data

$ sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb

 3. Installing the CUDA public GPG key

When installing using the local repo:

$ sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub

When installing using network repo on Ubuntu 18.04/18.10:

$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/
compute/cuda/repos/<distro>/<architecture>/7fa2af80.pub

When installing using network repo on Ubuntu 16.04:

$ sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/
compute/cuda/repos/<distro>/<architecture>/7fa2af80.pub

 4. Update the Apt repository cache

$ sudo apt-get update

 5. Install CUDA

$ sudo apt-get install cuda

 6. Perform the post-installation actions.

3.7. Additional Package Manager Capabilities
Below are some additional capabilities of the package manager that users can take
advantage of.

3.7.1. Available Packages
The recommended installation package is the cuda package. This package will install the
full set of other CUDA packages required for native development and will cover most
scenarios.

The cuda package installs all the available packages for native development, including,
to name a few, the following:

‣ The compiler, the debugger, the profiler, and the math libraries.
‣ The NVIDIA driver package.
‣ For x86_64 patforms: NSight Eclipse Edition and the Visual Profiler.

For cross-platform development on supported platforms, the following applies:

‣ The cuda-cross-aarch64 package will install all the packages required for cross-
platform development to ARMv8.

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 14

‣ Similarly, the cuda-cross-qnx package will install all the packages required for
cross-platform development to the QNX architecture.

‣ The libraries and header files of the target architecture's display driver package are
also installed to enable the cross compilation of driver applications.

‣ The cuda-cross-<arch> packages do not install the native display driver.

The packages installed by the cross-platform development packages above can also be
installed individually by specifying their names explicitly. The list of available packages
be can obtained with:

$ yum --disablerepo="*" --enablerepo="cuda*" list available # RedHat
$ dnf --disablerepo="*" --enablerepo="cuda*" list available # Fedora
$ zypper packages -r cuda # OpenSUSE & SLES
$ cat /var/lib/apt/lists/*cuda*Packages | grep "Package:" # Ubuntu

3.7.2. Package Upgrades
The cuda package points to the latest stable release of the CUDA Toolkit. When a new
version is available, use the following commands to upgrade the toolkit and driver:

$ sudo yum install cuda # RedHat
$ sudo dnf install cuda # Fedora
$ sudo zypper install cuda # OpenSUSE & SLES
$ sudo apt-get install cuda # Ubuntu

The cuda-cross-<arch> packages can also be upgraded in the same manner.

The cuda-drivers package points to the latest driver release available in the CUDA
repository. When a new version is available, use the following commands to upgrade the
driver:

$ sudo yum install nvidia-driver-latest-dkms # RedHat
$ sudo dnf install cuda-drivers # Fedora
$ sudo zypper install cuda-drivers \
 nvidia-gfxG04-kmp-default # OpenSUSE & SLES
$ sudo apt-get install cuda-drivers # Ubuntu

Some desktop environments, such as GNOME or KDE, will display an notification alert
when new packages are available.

To avoid any automatic upgrade, and lock down the toolkit installation to the X.Y
release, install the cuda-X-Y or cuda-cross-<arch>-X-Y package.

Side-by-side installations are supported. For instance, to install both the X.Y CUDA
Toolkit and the X.Y+1 CUDA Toolkit, install the cuda-X.Y and cuda-X.Y+1 packages.

3.7.3. Meta Packages
Meta packages are RPM/Deb packages which contain no (or few) files but have multiple
dependencies. They are used to install many CUDA packages when you may not know
the details of the packages you want. Below is the list of meta packages.

Package Manager Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 15

Table 4 Meta Packages Available for CUDA 10.2

Meta Package Purpose

cuda Installs all CUDA Toolkit and Driver packages.
Handles upgrading to the next version of the cuda
package when it's released.

cuda-10-2 Installs all CUDA Toolkit and Driver packages.
Remains at version 10.2 until an additional version
of CUDA is installed.

cuda-toolkit-10-2 Installs all CUDA Toolkit packages required to
develop CUDA applications. Does not include the
driver.

cuda-tools-10-2 Installs all CUDA command line and visual tools.

cuda-runtime-10-2 Installs all CUDA Toolkit packages required to run
CUDA applications, as well as the Driver packages.

cuda-compiler-10-2 Installs all CUDA compiler packages.

cuda-libraries-10-2 Installs all runtime CUDA Library packages.

cuda-libraries-dev-10-2 Installs all development CUDA Library packages.

cuda-drivers Installs all Driver packages. Handles upgrading
to the next version of the Driver packages when
they're released.

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 16

Chapter 4.
RUNFILE INSTALLATION

Basic instructions can be found in the Quick Start Guide. Read on for more detailed
instructions.

This section describes the installation and configuration of CUDA when using the
standalone installer. The standalone installer is a ".run" file and is completely self-
contained.

4.1. Overview
The Runfile installation installs the NVIDIA Driver, the CUDA Toolkit, and CUDA
Samples, via an interactive ncurses-based interface.

The installation steps are listed below. Distribution-specific instructions for disabling the
Nouveau drivers, and the steps for verifying device node creation, are also provided.

Finally, the advanced options for the installer and the uninstallation steps are detailed
below.

The Runfile installation does not include support for cross-platform development. For
cross-platform development, see the CUDA Cross-Platform Environment section.

4.2. Installation
 1. Perform the pre-installation actions.
 2. Disable the Nouveau drivers.
 3. Reboot into text mode (runlevel 3).

This can usually be accomplished by adding the number "3" to the end of the
system's kernel boot parameters.

Since the NVIDIA drivers are not yet installed, the text terminals may not display
correctly. Temporarily adding "nomodeset" to the system's kernel boot parameters
may fix this issue.

http://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#linux

Runfile Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 17

Consult your system's bootloader documentation for information on how to make
the above boot parameter changes.

The reboot is required to completely unload the Nouveau drivers and prevent the
graphical interface from loading. The CUDA driver cannot be installed while the
Nouveau drivers are loaded or while the graphical interface is active.

 4. Verify that the Nouveau drivers are not loaded. If the Nouveau drivers are still
loaded, consult your distribution's documentation to see if further steps are needed
to disable Nouveau.

 5. Run the installer and follow the on-screen prompts:

$ sudo sh cuda_<version>_linux.run

See Installer UI for navigating the ncurses-based installer UI.

As of CUDA 10.1 some libraries will be installed in the system standard locations
rather than in the Toolkit installation directory. Depending on your distribution
these installed locations can be either: /usr/lib/x84_64-linux-gnu, or /usr/
lib64, or /usr/lib. See the Advanced Options for how to change this location.

The default installation locations for the toolkit and samples are:

Component Default Installation Directory

CUDA Toolkit /usr/local/cuda-10.2

CUDA Samples $(HOME)/NVIDIA_CUDA-10.2_Samples

The /usr/local/cuda symbolic link points to the location where the CUDA
Toolkit was installed. This link allows projects to use the latest CUDA Toolkit
without any configuration file update.

The installer must be executed with sufficient privileges to perform some actions.
When the current privileges are insufficient to perform an action, the installer will
ask for the user's password to attempt to install with root privileges. Actions that
cause the installer to attempt to install with root privileges are:

‣ installing the CUDA Driver
‣ installing the CUDA Toolkit to a location the user does not have permission to

write to
‣ installing the CUDA Samples to a location the user does not have permission to

write to
‣ creating the /usr/local/cuda symbolic link

Running the installer with sudo, as shown above, will give permission to install to
directories that require root permissions. Directories and files created while running
the installer with sudo will have root ownership.

If installing the driver, the installer will also ask if the openGL libraries should be
installed. If the GPU used for display is not an NVIDIA GPU, the NVIDIA openGL
libraries should not be installed. Otherwise, the openGL libraries used by the
graphics driver of the non-NVIDIA GPU will be overwritten and the GUI will not
work. If performing a silent installation, the --no-opengl-libs option should

Runfile Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 18

be used to prevent the openGL libraries from being installed. See the Advanced
Options section for more details.

If the GPU used for display is an NVIDIA GPU, the X server configuration
file, /etc/X11/xorg.conf, may need to be modified. In some cases, nvidia-
xconfig can be used to automatically generate a xorg.conf file that works for
the system. For non-standard systems, such as those with more than one GPU,
it is recommended to manually edit the xorg.conf file. Consult the xorg.conf
documentation for more information.

Installing Mesa may overwrite the /usr/lib/libGL.so that was previously
installed by the NVIDIA driver, so a reinstallation of the NVIDIA driver might be
required after installing these libraries.

 6. Reboot the system to reload the graphical interface.
 7. Verify the device nodes are created properly.
 8. Perform the post-installation actions.

4.3. Installer UI
The installer UI has three main states:

 1. EULA Acceptance.

 a. Scroll through the EULA using the arrow keys, the page up/down keys, or a
scroll wheel.

 2. Component Selection.

 a. Navigate the menu using the arrow keys. The left/right keys will expand/
collapse sub-elements.

 b. Select or deselect items to install by pressing the spacebar or enter key with the
cursor on that item.

 c. With the cursor over an item with advanced options available, press 'A' to see
that options menu. This is currently available for CUDA Toolkit and CUDA
Samples items only.

 3. Advanced Options.

 a. Options such as setting the install path for a specific component are available
here.

4.4. Disabling Nouveau
To install the Display Driver, the Nouveau drivers must first be disabled. Each
distribution of Linux has a different method for disabling Nouveau.

The Nouveau drivers are loaded if the following command prints anything:

$ lsmod | grep nouveau

Runfile Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 19

4.4.1. Fedora
 1. Create a file at /usr/lib/modprobe.d/blacklist-nouveau.conf with the

following contents:

blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initramfs:

$ sudo dracut --force

 3. Run the below command:

$ sudo grub2-mkconfig -o /boot/grub2/grub.cfg

 4. Reboot the system.

4.4.2. RHEL/CentOS
 1. Create a file at /etc/modprobe.d/blacklist-nouveau.conf with the following

contents:

blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initramfs:

$ sudo dracut --force

4.4.3. OpenSUSE
 1. Create a file at /etc/modprobe.d/blacklist-nouveau.conf with the following

contents:

blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initrd:

$ sudo /sbin/mkinitrd

4.4.4. SLES
No actions to disable Nouveau are required as Nouveau is not installed on SLES.

4.4.5. Ubuntu
 1. Create a file at /etc/modprobe.d/blacklist-nouveau.conf with the following

contents:

blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initramfs:

$ sudo update-initramfs -u

Runfile Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 20

4.5. Device Node Verification
Check that the device files/dev/nvidia* exist and have the correct (0666) file
permissions. These files are used by the CUDA Driver to communicate with the kernel-
mode portion of the NVIDIA Driver. Applications that use the NVIDIA driver, such as
a CUDA application or the X server (if any), will normally automatically create these
files if they are missing using the setuid nvidia-modprobe tool that is bundled with the
NVIDIA Driver. However, some systems disallow setuid binaries, so if these files do not
exist, you can create them manually by using a startup script such as the one below:
#!/bin/bash

/sbin/modprobe nvidia

if ["$?" -eq 0]; then
 # Count the number of NVIDIA controllers found.
 NVDEVS=`lspci | grep -i NVIDIA`
 N3D=`echo "$NVDEVS" | grep "3D controller" | wc -l`
 NVGA=`echo "$NVDEVS" | grep "VGA compatible controller" | wc -l`

 N=`expr $N3D + $NVGA - 1`
 for i in `seq 0 $N`; do
 mknod -m 666 /dev/nvidia$i c 195 $i
 done

 mknod -m 666 /dev/nvidiactl c 195 255

else
 exit 1
fi

/sbin/modprobe nvidia-uvm

if ["$?" -eq 0]; then
 # Find out the major device number used by the nvidia-uvm driver
 D=`grep nvidia-uvm /proc/devices | awk '{print $1}'`

 mknod -m 666 /dev/nvidia-uvm c $D 0
else
 exit 1
fi

4.6. Advanced Options
Action Options Used Explanation

Silent
Installation

--silent Required for any silent installation. Performs an
installation with no further user-input and minimal
command-line output based on the options provided
below. Silent installations are useful for scripting
the installation of CUDA. Using this option implies
acceptance of the EULA. The following flags can be
used to customize the actions taken during installation.
At least one of --driver, --uninstall, --toolkit, and
--samples must be passed if running with non-root
permissions.

Runfile Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 21

Action Options Used Explanation

--driver Install the CUDA Driver.

--toolkit Install the CUDA Toolkit.

--toolkitpath=<path> Install the CUDA Toolkit to the <path> directory. If not
provided, the default path of /usr/local/cuda-10.2
is used.

--samples Install the CUDA Samples.

--samplespath=<path> Install the CUDA Samples to the <path> directory.
If not provided, the default path of $(HOME)/
NVIDIA_CUDA-10.2_Samples is used.

--defaultroot=<path> Install libraries to the <path> directory. If the <path> is
not provided, then the default path of your distribution
is used. This only applies to the libraries installed
outside of the CUDA Toolkit path.

Extraction --extract=<path> Extracts to the <path> the following: the driver runfile,
the raw files of the toolkit and samples to <path>.

This is especially useful when one wants to install the
driver using one or more of the command-line options
provided by the driver installer which are not exposed
in this installer.

Overriding
Installation
Checks

--override Ignores compiler, third-party library, and toolkit
detection checks which would prevent the CUDA Toolkit
and CUDA Samples from installing.

No OpenGL
Libraries

--no-opengl-libs Prevents the driver installation from installing NVIDIA's
GL libraries. Useful for systems where the display is
driven by a non-NVIDIA GPU. In such systems, NVIDIA's
GL libraries could prevent X from loading properly.

No man pages --no-man-page Do not install the man pages under /usr/share/man.

Overriding Kernel
Source

--kernel-source-
path=<path>

Tells the driver installation to use <path> as the kernel
source directory when building the NVIDIA kernel
module. Required for systems where the kernel source
is installed to a non-standard location.

Running nvidia-
xconfig

--run-nvidia-xconfig Tells the driver installation to run nvidia-xconfig to
update the system X configuration file so that the
NVIDIA X driver is used. The pre-existing X configuration
file will be backed up.

No nvidia-drm
kernel module

--no-drm Do not install the nvidia-drm kernel module. This option
should only be used to work around failures to build or
install the nvidia-drm kernel module on systems that do
not need the provided features.

Custom
Temporary
Directory
Selection

--tmpdir=<path> Performs any temporary actions within <path> instead
of /tmp. Useful in cases where /tmp cannot be used
(doesn't exist, is full, is mounted with 'noexec', etc.).

Show Installer
Options

--help Prints the list of command-line options to stdout.

Runfile Installation

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 22

4.7. Uninstallation
To uninstall the CUDA Toolkit, run the uninstallation script provided in the bin
directory of the toolkit. By default, it is located in /usr/local/cuda-10.2/bin:

$ sudo /usr/local/cuda-10.2/bin/cuda-uninstaller

To uninstall the NVIDIA Driver, run nvidia-uninstall:

$ sudo /usr/bin/nvidia-uninstall

To enable the Nouveau drivers, remove the blacklist file created in the Disabling
Nouveau section, and regenerate the kernel initramfs/initrd again as described in that
section.

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 23

Chapter 5.
CLUSTER MANAGEMENT PACKAGES

5.1. Overview
Cluster management packages are provided as an alternative set of RPM and Deb
packages intended to be used by deployment management tools as standalone packages.
These packages are available for RHEL 6, RHEL 7, Ubuntu 14.04, and Ubuntu 16.04 on
the x86_64 architecture. There are three parts to the cluster management packages: the
CUDA toolkit packages, the NVIDIA driver packages, and the README.

The cluster management toolkit packages are split into a runtime package, cuda-
cluster-runtime-10-2, and a development package, cuda-cluster-devel-10-2.
The development package depends on the runtime package. The driver packages are
the same as what is provided in the general RPM and Deb solution used in the Package
Management section.

The README describes the package and kernel source dependencies of the cluster
management packages. The README also describes the order of installation of the
standalone cluster management packages.

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 24

Chapter 6.
CUDA CROSS-PLATFORM ENVIRONMENT

Cross-platform development is only supported on Ubuntu systems, and is only
provided via the Package Manager installation process.

6.1. CUDA Cross-Platform Installation
Some of the following steps may have already been performed as part of the native
Ubuntu installation. Such steps can safely be skipped.

These steps should be performed on the x86_64 host system, rather than the target
system. To install the native CUDA Toolkit on the target system, refer to the native
Ubuntu installation section.

 1. Perform the pre-installation actions.
 2. Install repository meta-data package with:

$ sudo dpkg -i cuda-repo-cross-<identifier>_all.deb

where <identifier> indicates the operating system, architecture, and/or the
version of the package.

 3. Update the Apt repository cache:

$ sudo apt-get update

 4. Install the appropriate cross-platform CUDA Toolkit:

 a. For aarch64:

$ sudo apt-get install cuda-cross-aarch64

 b. For QNX:

$ sudo apt-get install cuda-cross-qnx

 5. Perform the post-installation actions.

CUDA Cross-Platform Environment

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 25

6.2. CUDA Cross-Platform Samples
This section describes the options used to build cross-platform samples.
TARGET_ARCH=<arch> and TARGET_OS=<os> should be chosen based on the supported
targets shown below. TARGET_FS=<path> can be used to point nvcc to libraries and
headers used by the sample.

Table 5 Supported Target Arch/OS Combinations

TARGET OS

linux darwin android qnx

x86_64 YES YES NO NO
TARGET ARCH

aarch64 YES NO YES YES

TARGET_ARCH
The target architecture must be specified when cross-compiling applications. If not
specified, it defaults to the host architecture. Allowed architectures are:

‣ x86_64 - 64-bit x86 CPU architecture
‣ aarch64 - 64-bit ARM CPU architecture, like that found on Jetson TX1 onwards

TARGET_OS
The target OS must be specified when cross-compiling applications. If not specified, it
defaults to the host OS. Allowed OSes are:

‣ linux - for any Linux distributions
‣ darwin - for Mac OS X
‣ android - for any supported device running Android
‣ qnx - for any supported device running QNX

TARGET_FS
The most reliable method to cross-compile the CUDA Samples is to use the TARGET_FS
variable. To do so, mount the target's filesystem on the host, say at /mnt/target. This is
typically done using exportfs. In cases where exportfs is unavailable, it is sufficient
to copy the target's filesystem to /mnt/target. To cross-compile a sample, execute:

$ make TARGET_ARCH=<arch> TARGET_OS=<os> TARGET_FS=/mnt/target

Cross Compiling to ARM architectures
While cross compiling the samples from x86_64 installation to ARM architectures,
that is, aarch64, if you intend to run the executable on Tegra GPU, then the following
applies:

CUDA Cross-Platform Environment

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 26

The SMS variable must override SM architectures to the Tegra GPU through
SMS=<TEGRA_GPU_SM_ARCH>, where <TEGRA_GPU_SM_ARCH> is the SM architecture of
Tegra GPU on which you want the generated binary to run on. For example it can be
SMS="32 53 62".

You can also add SM arch of discrete GPU to this list <TEGRA_GPU_SM_ARCH> if you
intend to run on embedded board having discrete GPU as well.

To cross compile a sample, execute:

$ make TARGET_ARCH=<arch> TARGET_OS=<os> SMS=<TEGRA_GPU_SM_ARCHS> TARGET_FS=/
mnt/target

Copying Libraries
If the TARGET_FS option is not available, the libraries used should be copied from
the target system to the host system, say at /opt/target/libs. If the sample uses
GL, the GL headers must also be copied, say at /opt/target/include. The linker
must then be told where the libraries are with the -rpath-link and/or -L options. To
ignore unresolved symbols from some libraries, use the --unresolved-symbols option
as shown below. SAMPLE_ENABLED should be used to force the sample to build. For
example, to cross-compile a sample which uses such libraries, execute:

$ make TARGET_ARCH=<arch> TARGET_OS=<os> \
 EXTRA_LDFLAGS="-rpath-link=/opt/target/libs -L/opt/target/libs --
unresolved-symbols=ignore-in-shared-libs" \
 EXTRA_CCFLAGS="-I /opt/target/include" \
 SAMPLE_ENABLED=1

6.3. Nsight Eclipse Edition
Nsight Eclipse Edition supports cross-platform development. See the Nsight Eclipse
Edition Getting Started Guide for more details.

http://docs.nvidia.com/cuda/nsight-eclipse-edition-getting-started-guide/index.html#remote-development
http://docs.nvidia.com/cuda/nsight-eclipse-edition-getting-started-guide/index.html#remote-development

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 27

Chapter 7.
POST-INSTALLATION ACTIONS

The post-installation actions must be manually performed. These actions are split into
mandatory, recommended, and optional sections.

7.1. Mandatory Actions
Some actions must be taken after the installation before the CUDA Toolkit and Driver
can be used.

7.1.1. Environment Setup
The PATH variable needs to include /usr/local/cuda-10.2/bin and /usr/local/
cuda-10.2/NsightCompute-<tool-version>. <tool-version> refers to the version
of Nsight Compute that ships with the CUDA toolkit, e.g. 2019.1.

To add this path to the PATH variable:

$ export PATH=/usr/local/cuda-10.2/bin:/usr/local/cuda-10.2/
NsightCompute-2019.1${PATH:+:${PATH}}

In addition, when using the runfile installation method, the LD_LIBRARY_PATH variable
needs to contain /usr/local/cuda-10.2/lib64 on a 64-bit system, or /usr/local/
cuda-10.2/lib on a 32-bit system

‣ To change the environment variables for 64-bit operating systems:

$ export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64\
 ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

‣ To change the environment variables for 32-bit operating systems:

$ export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib\
 ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Note that the above paths change when using a custom install path with the runfile
installation method.

Post-installation Actions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 28

7.1.2. POWER9 Setup
Because of the addition of new features specific to the NVIDIA POWER9 CUDA
driver, there are some additional setup requirements in order for the driver to function
properly. These additional steps are not handled by the installation of CUDA packages,
and failure to ensure these extra requirements are met will result in a non-functional
CUDA driver installation.

There are two changes that need to be made manually after installing the NVIDIA
CUDA driver to ensure proper operation:

 1. The NVIDIA Persistence Daemon should be automatically started for POWER9
installations. Check that it is running with the following command:

$ systemctl status nvidia-persistenced

If it is not active, run the following command:

$ sudo systemctl enable nvidia-persistenced

 2. Disable a udev rule installed by default in some Linux distributions that cause hot-
pluggable memory to be automatically onlined when it is physically probed. This
behavior prevents NVIDIA software from bringing NVIDIA device memory online
with non-default settings. This udev rule must be disabled in order for the NVIDIA
CUDA driver to function properly on POWER9 systems.

On RedHat Enterprise Linux 7, this rule can be found in:

/lib/udev/rules.d/40-redhat.rules

On Ubuntu 17.04, this rule can be found in:

/lib/udev/rules.d/40-vm-hotadd.rules

The rule generally takes a form where it detects the addition of a memory block and
changes the 'state' attribute to online. For example, in RHEL7, the rule looks like this:

SUBSYSTEM=="memory", ACTION=="add", PROGRAM="/bin/uname -p", RESULT!
="s390*", ATTR{state}=="offline", ATTR{state}="online"

This rule must be disabled by copying the file to /etc/udev/rules.d and commenting
out, removing, or changing the hot-pluggable memory rule in the /etc copy so that
it does not apply to POWER9 NVIDIA systems. For example, on RHEL 7.5 or earlier
versions:

$ sudo cp /lib/udev/rules.d/40-redhat.rules /etc/udev/rules.d
$ sudo sed -i '/SUBSYSTEM=="memory", ACTION=="add"/d' /etc/udev/rules.d/40-
redhat.rules

On RHEL 7.6 and later versions:

$ sudo cp /lib/udev/rules.d/40-redhat.rules /etc/udev/rules.d
$ sudo sed -i 's/SUBSYSTEM!="memory", ACTION!="add",
 GOTO="memory_hotplug_end"/SUBSYSTEM=="*", GOTO="memory_hotplug_end"/' /etc/
udev/rules.d/40-redhat.rules

Post-installation Actions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 29

You will need to reboot the system to initialize the above changes.

For NUMA best practices on IBM Newell POWER9, see NUMA Best Practices.

7.2. Recommended Actions
Other actions are recommended to verify the integrity of the installation.

7.2.1. Install Persistence Daemon
NVIDIA is providing a user-space daemon on Linux to support persistence of driver
state across CUDA job runs. The daemon approach provides a more elegant and robust
solution to this problem than persistence mode. For more details on the NVIDIA
Persistence Daemon, see the documentation here.

The NVIDIA Persistence Daemon can be started as the root user by running:

$ /usr/bin/nvidia-persistenced --verbose

This command should be run on boot. Consult your Linux distribution's init
documentation for details on how to automate this.

7.2.2. Install Writable Samples
In order to modify, compile, and run the samples, the samples must be installed with
write permissions. A convenience installation script is provided:

$ cuda-install-samples-10.2.sh <dir>

This script is installed with the cuda-samples-10-2 package. The cuda-samples-10-2
package installs only a read-only copy in /usr/local/cuda-10.2/samples.

7.2.3. Verify the Installation
Before continuing, it is important to verify that the CUDA toolkit can find and
communicate correctly with the CUDA-capable hardware. To do this, you need to
compile and run some of the included sample programs.

Ensure the PATH and, if using the runfile installation method, LD_LIBRARY_PATH
variables are set correctly.

7.2.3.1. Verify the Driver Version
If you installed the driver, verify that the correct version of it is loaded. If you did not
install the driver, or are using an operating system where the driver is not loaded via a
kernel module, such as L4T, skip this step.

When the driver is loaded, the driver version can be found by executing the command

../cuda-c-best-practices-guide/index.html#numa-best-practices
http://docs.nvidia.com/deploy/driver-persistence/index.html#persistence-daemon

Post-installation Actions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 30

$ cat /proc/driver/nvidia/version

Note that this command will not work on an iGPU/dGPU system.

7.2.3.2. Compiling the Examples
The version of the CUDA Toolkit can be checked by running nvcc -V in a terminal
window. The nvcc command runs the compiler driver that compiles CUDA programs. It
calls the gcc compiler for C code and the NVIDIA PTX compiler for the CUDA code.

The NVIDIA CUDA Toolkit includes sample programs in source form. You should
compile them by changing to ~/NVIDIA_CUDA-10.2_Samples and typing make. The
resulting binaries will be placed under ~/NVIDIA_CUDA-10.2_Samples/bin.

7.2.3.3. Running the Binaries
After compilation, find and run deviceQuery under ~/NVIDIA_CUDA-10.2_Samples.
If the CUDA software is installed and configured correctly, the output for deviceQuery
should look similar to that shown in Figure 1.

Figure 1 Valid Results from deviceQuery CUDA Sample

The exact appearance and the output lines might be different on your system. The
important outcomes are that a device was found (the first highlighted line), that the
device matches the one on your system (the second highlighted line), and that the test
passed (the final highlighted line).

If a CUDA-capable device and the CUDA Driver are installed but deviceQuery reports
that no CUDA-capable devices are present, this likely means that the /dev/nvidia*
files are missing or have the wrong permissions.

Post-installation Actions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 31

On systems where SELinux is enabled, you might need to temporarily disable this
security feature to run deviceQuery. To do this, type:

$ setenforce 0

from the command line as the superuser.

Running the bandwidthTest program ensures that the system and the CUDA-capable
device are able to communicate correctly. Its output is shown in Figure 2.

Figure 2 Valid Results from bandwidthTest CUDA Sample

Note that the measurements for your CUDA-capable device description will vary from
system to system. The important point is that you obtain measurements, and that the
second-to-last line (in Figure 2) confirms that all necessary tests passed.

Should the tests not pass, make sure you have a CUDA-capable NVIDIA GPU on your
system and make sure it is properly installed.

If you run into difficulties with the link step (such as libraries not being found), consult
the Linux Release Notes found in the doc folder in the CUDA Samples directory.

7.2.4. Install Nsight Eclipse Plugins
To install Nsight Eclipse plugins, an installation script is provided:

$ /usr/local/cuda-10.2/bin/nsight_ee_plugins_manage.sh install <eclipse-dir>

Refer to Nsight Eclipse Plugins Installation Guide for more details.

http://docs.nvidia.com/cuda/nsightee-plugins-install-guide/index.html

Post-installation Actions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 32

7.3. Optional Actions
Other options are not necessary to use the CUDA Toolkit, but are available to provide
additional features.

7.3.1. Install Third-party Libraries
Some CUDA samples use third-party libraries which may not be installed by default on
your system. These samples attempt to detect any required libraries when building. If a
library is not detected, it waives itself and warns you which library is missing. To build
and run these samples, you must install the missing libraries. These dependencies may
be installed if the RPM or Deb cuda-samples-10-2 package is used. In cases where
these dependencies are not installed, follow the instructions below.

RHEL/CentOS

$ sudo yum install freeglut-devel libX11-devel libXi-devel libXmu-devel \
 make mesa-libGLU-devel

Fedora

$ sudo dnf install freeglut-devel libX11-devel libXi-devel libXmu-devel \
 make mesa-libGLU-devel

SLES

$ sudo zypper install libglut3 libX11 libXi6 libXmu6 libGLU1 make

OpenSUSE

$ sudo zypper install freeglut-devel libX11-devel libXi-devel libXmu-devel \
 make Mesa-libGL-devel

Ubuntu

$ sudo apt-get install g++ freeglut3-dev build-essential libx11-dev \
 libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev

7.3.2. Install the source code for cuda-gdb
The cuda-gdb source must be explicitly selected for installation with the runfile
installation method. During the installation, in the component selection page, expand
the component "CUDA Tools 10.1" and select the cuda-gdb-src for installation. It is
unchecked by default.

To obtain a copy of the source code for cuda-gdb using the RPM and Debian installation
methods, the cuda-gdb-src package must be installed.

The source code is installed as a tarball in the /usr/local/cuda-10.2/extras directory.

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 33

Chapter 8.
ADVANCED SETUP

Below is information on some advanced setup scenarios which are not covered in the
basic instructions above.

Table 6 Advanced Setup Scenarios when Installing CUDA

Scenario Instructions

Install CUDA using
the Package Manager
installation method
without installing the
NVIDIA GL libraries.

RHEL 7/CentOS 7

Install CUDA using the following command:

$ sudo yum install cuda-toolkit-10-2 \
 nvidia-driver-cuda nvidia-kmod

If the system is using a non-NVIDIA GPU to render the display, remove the
files at /etc/X11/xorg.conf and /usr/lib64/nvidia/xorg/libglx.so,
and remove the nomodeset kernel parameter from the boot command-line.

Follow the instructions here to ensure that Nouveau is disabled.

RHEL 6/CentOS 6

Install CUDA using the following command:

$ sudo yum install cuda-toolkit-10-2 \
 xorg-x11-drv-nvidia-libs nvidia-kmod

If the system is using a non-NVIDIA GPU to render the display, remove the file
at /etc/X11/xorg.conf.

Follow the instructions here to ensure that Nouveau is disabled.

Fedora

Install CUDA using the following command:

$ sudo dnf install cuda-toolkit-10-2 \
 nvidia-driver-cuda akmod-nvidia

Follow the instructions here to ensure that Nouveau is disabled.

If performing an upgrade over a previous installation, the NVIDIA kernel
module may need to be rebuilt by following the instructions here.

OpenSUSE/SLES

On some system configurations the NVIDIA GL libraries may need to be locked
before installation using:

Advanced Setup

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 34

Scenario Instructions
$ sudo zypper addlock nvidia-glG04

Install CUDA using the following command:

$ sudo zypper install --no-recommends cuda-toolkit-10-2 \
 nvidia-computeG04 \
 nvidia-gfxG04-kmp-default

Follow the instructions here to ensure that Nouveau is disabled.

Ubuntu

This functionality isn't supported on Ubuntu. Instead, the driver packages
integrate with the Bumblebee framework to provide a solution for users
who wish to control what applications the NVIDIA drivers are used for. See
Ubuntu's Bumblebee wiki for more information.

Upgrade from a RPM/
Deb driver installation
which includes the
diagnostic driver
packages to a driver
installation which
does not include the
diagnostic driver
packages.

RHEL/CentOS

Remove diagnostic packages using the following command:

$ sudo yum remove cuda-drivers-diagnostic \
 xorg-x11-drv-nvidia-diagnostic

Follow the instructions here to continue installation as normal.

Fedora

Remove diagnostic packages using the following command:

$ sudo dnf remove cuda-drivers-diagnostic \
 xorg-x11-drv-nvidia-diagnostic

Follow the instructions here to continue installation as normal.

OpenSUSE/SLES

Remove diagnostic packages using the following command:

$ sudo zypper remove cuda-drivers-diagnostic \
 nvidia-diagnosticG04

Follow the instructions here to continue installation as normal.

Ubuntu

Remove diagnostic packages using the following command:

$ sudo apt-get --purge remove cuda-drivers-diagnostic \
 nvidia-384-diagnostic

Follow the instructions here to continue installation as normal.

Use a specific GPU for
rendering the display.

Add or replace a Device entry in your xorg.conf file, located at /etc/X11/
xorg.conf. The Device entry should resemble the following:

Section "Device"
 Identifier "Device0"
 Driver "driver_name"
 VendorName "vendor_name"
 BusID "bus_id"
EndSection

The details will you will need to add differ on a case-by-case basis. For
example, if you have two NVIDIA GPUs and you want the first GPU to be used
for display, you would replace "driver_name" with "nvidia", "vendor_name"
with "NVIDIA Corporation" and "bus_id" with the Bus ID of the GPU.

https://wiki.ubuntu.com/Bumblebee

Advanced Setup

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 35

Scenario Instructions

The Bus ID will resemble "PCI:00:02.0" and can be found by running lspci.

Install CUDA to a
specific directory using
the Package Manager
installation method.

RPM

The RPM packages don't support custom install locations through the package
managers (Yum and Zypper), but it is possible to install the RPM packages to
a custom location using rpm's --relocate parameter:

$ sudo rpm --install --relocate /usr/local/cuda-10.2=/new/
toolkit package.rpm

You will need to install the packages in the correct dependency order; this
task is normally taken care of by the package managers. For example, if
package "foo" has a dependency on package "bar", you should install package
"bar" first, and package "foo" second. You can check the dependencies of a
RPM package as follows:

$ rpm -qRp package.rpm

Note that the driver packages cannot be relocated.

Deb

The Deb packages do not support custom install locations. It is however
possible to extract the contents of the Deb packages and move the files
to the desired install location. See the next scenario for more details one
xtracting Deb packages.

Extract the contents of
the installers.

Runfile

The Runfile can be extracted into the standalone Toolkit, Samples and
Driver Runfiles by using the --extract parameter. The Toolkit and Samples
standalone Runfiles can be further extracted by running:

$./runfile.run --tar mxvf

The Driver Runfile can be extracted by running:

$./runfile.run -x

RPM

The RPM packages can be extracted by running:

$ rpm2cpio package.rpm | cpio -idmv

Deb

The Deb packages can be extracted by running:

$ dpkg-deb -x package.deb output_dir

Modify Ubuntu's apt
package manager
to query specific
architectures for
specific repositories.

This is useful when a
foreign architecture has
been added, causing
"404 Not Found" errors
to appear when the

Each repository you wish to restrict to specific architectures must have its
sources.list entry modified. This is done by modifying the /etc/apt/
sources.list file and any files containing repositories you wish to restrict
under the /etc/apt/sources.list.d/ directory. Normally, it is sufficient
to modify only the entries in /etc/apt/sources.list

An architecture-restricted repository entry looks like:

deb [arch=<arch1>,<arch2>] <url>

For example, if you wanted to restrict a repository to only the amd64 and
i386 architectures, it would look like:

Advanced Setup

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 36

Scenario Instructions

repository meta-data is
updated.

deb [arch=amd64,i386] <url>

It is not necessary to restrict the deb-src repositories, as these repositories
don't provide architecture-specific packages.

For more details, see the sources.list manpage.

The nvidia.ko kernel
module fails to load,
saying some symbols are
unknown.

For example:

nvidia: Unknown
 symbol drm_open
 (err 0)

Check to see if there are any optionally installable modules that might
provide these symbols which are not currently installed.

For the example of the drm_open symbol, check to see if there are any
packages which provide drm_open and are not already installed. For
instance, on Ubuntu 14.04, the linux-image-extra package provides the
DRM kernel module (which provides drm_open). This package is optional
even though the kernel headers reflect the availability of DRM regardless of
whether this package is installed or not.

The runfile installer
fails to extract due to
limited space in the TMP
directory.

This can occur on systems with limited storage in the TMP directory (usually /
tmp), or on systems which use a tmpfs in memory to handle temporary
storage. In this case, the --tmpdir command-line option should be used to
instruct the runfile to use a directory with sufficient space to extract into.
More information on this option can be found here.

Re-enable Wayland after
installing the RPM driver
on Fedora.

Wayland is disabled during installation of the Fedora driver RPM due to
compatability issues. To re-enable wayland, comment out this line in /etc/
gdm/custom.conf:

WaylandEnable=false

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 37

Chapter 9.
FREQUENTLY ASKED QUESTIONS

How do I install the Toolkit in a different location?
The Runfile installation asks where you wish to install the Toolkit and the Samples
during an interactive install. If installing using a non-interactive install, you can use the
--toolkitpath and --samplespath parameters to change the install location:

$./runfile.run --silent \
 --toolkit --toolkitpath=/my/new/toolkit \
 --samples --samplespath=/my/new/samples

The RPM and Deb packages cannot be installed to a custom install location directly
using the package managers. See the "Install CUDA to a specific directory using the
Package Manager installation method" scenario in the Advanced Setup section for more
information.

Why do I see "nvcc: No such file or directory"
when I try to build a CUDA application?
Your PATH environment variable is not set up correctly. Ensure that your PATH includes
the bin directory where you installed the Toolkit, usually /usr/local/cuda-10.2/bin.

$ export PATH=/usr/local/cuda-10.2/bin${PATH:+:${PATH}}

Why do I see "error while loading shared libraries:
<lib name>: cannot open shared object file: No

Frequently Asked Questions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 38

such file or directory" when I try to run a CUDA
application that uses a CUDA library?
Your LD_LIBRARY_PATH environment variable is not set up correctly. Ensure that your
LD_LIBRARY_PATH includes the lib and/or lib64 directory where you installed the
Toolkit, usually /usr/local/cuda-10.2/lib{,64}:

$ export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib\
 ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Why do I see multiple "404 Not Found" errors
when updating my repository meta-data on
Ubuntu?
These errors occur after adding a foreign architecture because apt is attempting to
query for each architecture within each repository listed in the system's sources.list file.
Repositories that do not host packages for the newly added architecture will present this
error. While noisy, the error itself does no harm. Please see the Advanced Setup section
for details on how to modify your sources.list file to prevent these errors.

How can I tell X to ignore a GPU for compute-only
use?
To make sure X doesn't use a certain GPU for display, you need to specify which other
GPU to use for display. For more information, please refer to the "Use a specific GPU for
rendering the display" scenario in the Advanced Setup section.

Why doesn't the cuda-repo package install the
CUDA Toolkit and Drivers?
When using RPM or Deb, the downloaded package is a repository package. Such
a package only informs the package manager where to find the actual installation
packages, but will not install them.

See the Package Manager Installation section for more details.

How do I get CUDA to work on a laptop with an
iGPU and a dGPU running Ubuntu14.04?
After installing CUDA, set the driver value for the intel device in /etc/X11/xorg.conf to
'modesetting' as shown below:

Frequently Asked Questions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 39

Section "Device"
 Identifier "intel"
 Driver "modesetting"
 ...
EndSection

To prevent Ubuntu from reverting the change in xorg.conf, edit /etc/default/grub to add
"nogpumanager" to GRUB_CMDLINE_LINUX_DEFAULT.

Run the following command to update grub before rebooting:

$ sudo update-grub

What do I do if the display does not load, or CUDA
does not work, after performing a system update?
System updates may include an updated Linux kernel. In many cases, a new Linux
kernel will be installed without properly updating the required Linux kernel headers
and development packages. To ensure the CUDA driver continues to work when
performing a system update, rerun the commands in the Kernel Headers and
Development Packages section.

Additionally, on Fedora, the Akmods framework will sometimes fail to correctly rebuild
the NVIDIA kernel module packages when a new Linux kernel is installed. When
this happens, it is usually sufficient to invoke Akmods manually and regenerate the
module mapping files by running the following commands in a virtual console, and
then rebooting:

$ sudo akmods --force
$ sudo depmod

You can reach a virtual console by hitting ctrl+alt+f2 at the same time.

How do I install a CUDA driver with a version less
than 367 using a network repo?
To install a CUDA driver at a version earlier than 367 using a network repo, the required
packages will need to be explicitly installed at the desired version. For example, to
install 352.99, instead of installing the cuda-drivers metapackage at version 352.99, you
will need to install all required packages of cuda-drivers at version 352.99.

How do I install an older CUDA version using a
network repo?
Depending on your system configuration, you may not be able to install old versions of
CUDA using the cuda metapackage. In order to install a specific version of CUDA, you
may need to specify all of the packages that would normally be installed by the cuda
metapackage at the version you want to install.

Frequently Asked Questions

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 40

If you are using yum to install certain packages at an older version, the dependencies
may not resolve as expected. In this case you may need to pass "--setopt=obsoletes=0" to
yum to allow an install of packages which are obsoleted at a later version than you are
trying to install.

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 41

Chapter 10.
ADDITIONAL CONSIDERATIONS

Now that you have CUDA-capable hardware and the NVIDIA CUDA Toolkit installed,
you can examine and enjoy the numerous included programs. To begin using CUDA to
accelerate the performance of your own applications, consult the CUDA C Programming
Guide, located in /usr/local/cuda-10.2/doc.

A number of helpful development tools are included in the CUDA Toolkit to assist
you as you develop your CUDA programs, such as NVIDIA® Nsight™ Eclipse Edition,
NVIDIA Visual Profiler, cuda-gdb, and cuda-memcheck.

For technical support on programming questions, consult and participate in the
developer forums at http://developer.nvidia.com/cuda/.

http://developer.nvidia.com/cuda/

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 42

Chapter 11.
REMOVING CUDA TOOLKIT AND DRIVER

Follow the below steps to properly uninstall the CUDA Toolkit and NVIDIA Drivers
from your system. These steps will ensure that the uninstallation will be clean.

RHEL/CentOS

To remove CUDA Toolkit:

$ sudo yum remove "*cublas*" "cuda*"

To remove NVIDIA Drivers:

$ sudo yum remove "*nvidia*"

Fedora

To remove CUDA Toolkit:

$ sudo dnf remove "*cublas*" "cuda*"

To remove NVIDIA Drivers:

$ sudo dnf remove "*nvidia*"

OpenSUSE/SLES

To remove CUDA Toolkit:

$ sudo zypper remove "*cublas*" "cuda*"

To remove NVIDIA Drivers:

$ sudo zypper remove "*nvidia*"

Ubuntu

To remove CUDA Toolkit:

$ sudo apt-get --purge remove "*cublas*" "cuda*"

Removing CUDA Toolkit and Driver

www.nvidia.com
NVIDIA CUDA Installation Guide for Linux DU-05347-001_v10.2 | 43

To remove NVIDIA Drivers:

$ sudo apt-get --purge remove "*nvidia*"

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2009-2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Introduction
	1.1. System Requirements
	1.2. About This Document

	Pre-installation Actions
	2.1. Verify You Have a CUDA-Capable GPU
	2.2. Verify You Have a Supported Version of Linux
	2.3. Verify the System Has gcc Installed
	2.4. Verify the System has the Correct Kernel Headers and Development Packages Installed
	2.5. Choose an Installation Method
	2.6. Download the NVIDIA CUDA Toolkit
	2.7. Handle Conflicting Installation Methods

	Package Manager Installation
	3.1. Overview
	3.2. Redhat/CentOS
	3.3. Fedora
	3.4. SLES
	3.5. OpenSUSE
	3.6. Ubuntu
	3.7. Additional Package Manager Capabilities
	3.7.1. Available Packages
	3.7.2. Package Upgrades
	3.7.3. Meta Packages

	Runfile Installation
	4.1. Overview
	4.2. Installation
	4.3. Installer UI
	4.4. Disabling Nouveau
	4.4.1. Fedora
	4.4.2. RHEL/CentOS
	4.4.3. OpenSUSE
	4.4.4. SLES
	4.4.5. Ubuntu

	4.5. Device Node Verification
	4.6. Advanced Options
	4.7. Uninstallation

	Cluster Management Packages
	5.1. Overview

	CUDA Cross-Platform Environment
	6.1. CUDA Cross-Platform Installation
	6.2. CUDA Cross-Platform Samples
	TARGET_ARCH
	TARGET_OS
	TARGET_FS
	Cross Compiling to ARM architectures
	Copying Libraries

	6.3. Nsight Eclipse Edition

	Post-installation Actions
	7.1. Mandatory Actions
	7.1.1. Environment Setup
	7.1.2. POWER9 Setup

	7.2. Recommended Actions
	7.2.1. Install Persistence Daemon
	7.2.2. Install Writable Samples
	7.2.3. Verify the Installation
	7.2.3.1. Verify the Driver Version
	7.2.3.2. Compiling the Examples
	7.2.3.3. Running the Binaries

	7.2.4. Install Nsight Eclipse Plugins

	7.3. Optional Actions
	7.3.1. Install Third-party Libraries
	7.3.2. Install the source code for cuda-gdb

	Advanced Setup
	Frequently Asked Questions
	How do I install the Toolkit in a different location?
	Why do I see "nvcc: No such file or directory" when I try to build a CUDA application?
	Why do I see "error while loading shared libraries: <lib name>: cannot open shared object file: No such file or directory" when I try to run a CUDA application that uses a CUDA library?
	Why do I see multiple "404 Not Found" errors when updating my repository meta-data on Ubuntu?
	How can I tell X to ignore a GPU for compute-only use?
	Why doesn't the cuda-repo package install the CUDA Toolkit and Drivers?
	How do I get CUDA to work on a laptop with an iGPU and a dGPU running Ubuntu14.04?
	What do I do if the display does not load, or CUDA does not work, after performing a system update?
	How do I install a CUDA driver with a version less than 367 using a network repo?
	How do I install an older CUDA version using a network repo?

	Additional Considerations
	Removing CUDA Toolkit and Driver

