

New GPU Features of NVIDIA's Maxwell Architecture

Holger Gruen - Senior DevTech Engineer

	9:30 am — 10:30 am	Holger Gruen, New GPU Features of NVIDIA's Maxwell Architecture
	11:00 am — 12:00 am	lain Cantlay, NVIDIA SLI and stutter avoidance: a recipe for smooth gaming and perfect scaling with multiple GPUs
AGENDA	12:30 am — 13:30 pm	Andrei Tatarinov, Tim Tcheblokov, Far Cry 4, Assassin's Creed Unity and War Thunder: Spicing up PC graphics with GameWorks
	14:00 pm — 15:00 pm	Nathan Reed, VR Direct: How NVIDIA Technology Is Improving The VR Experience
	15:30 pm — 16:30 pm	Alexey Panteleev, VXGI: dynamic global illumination for games
	17:00 pm – 18:00 pm	Jeffrey Kiel, Russ Kerschner, Brighter and faster graphics with NVIDIA Nsight Visual Studio Edition 4.5™ and beyond

Outline of this talk

Architectural goals of Maxwell

DirectX12 hardware features

Conservative Rasterization
Raster Order Views
Tiled Resources

Multi-Projection Acceleration

- New Antialiasing Features
- Misc other new features
- Questions and Answers

Direct3D 12

Latest high-performance graphics API
Low-level model, even more direct
Works across all Microsoft Platforms
Supported by excellent tools
Supports top PC hardware vendors

DirectX 12 Features

New API is parallelizable for rendering on multicore CPUs
Reduced API overhead for single-core work
More nimble resource binding model using indexing
More efficient data management/transfer model
More explicit work scheduling model
New Hardware Features

Demos in station at the Microsoft Booth of API and tools

Outline of this talk

Architectural goals of Maxwell

DirectX12 hardware features

Conservative Rasterization
Raster Order Views
Tiled Resources

Multi-Projection Acceleration

- New Antialiasing Features
- Misc other new features
- Questions and Answers

- New architecture for improved effiency still on a 28nm process
- Massively improved perf / watt
- Focus on new graphics features
 - Real-time GI for rich dynamic scenes
 - Higher quality, programmable AA
 - Working set management
 - Scalable 2D graphics acceleration
 - Create the best platform for DirectX 12

SMM											
PolyMorph Engine 2.0											
Vertex Fetch Tess			sell	ator		v	iewport T	ransform			
Attribute Setup Stream Output											
Instruction Cache											
Instructi	on Buffer	-		11		Ir	nstructio	on Buffe	r		
Warp S	cheduler						Warp Sc	heduler			
Dispatch Unit	Dis	spatch Un	it		Di	spatch Uni	t		ispatch Un	it	
₽ Register File (Register File (16,384 x 32-bit)				Register File (16,384 x 32-bit)						
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
			Tautura	J	1 Casha						
			Texture	11	I Gaulle	-	_				
Tex		Tex				lex			Tex		
Instruct	Instruction Buffer					Instruction Buffer					
Warp Scheduler Warp Scheduler							.14				
Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit											
Register File (16,384 x 32-bit)					Register File (16,384 x 32-bit)						
Core Core Core	Core		SFU		Core	Core	Core	Core		SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU	
Core Core Core			OFU	Г	Core	Core	Core	Core	LD/ST	SFU	
Core Core Core Core Core Core	Core	LD/ST	SFU	1							
Core Core Core Core Core Core	Core	LD/ST	Texture] /L	.1 Cache						
Core Core Core Core Core Core	Core	LD/ST Tex	Texture]	.1 Cache	Tex			Tex		

- New architecture for improved effiency still on a 28nm process
- Massively improved perf / watt
- Focus on new graphics features
 - Real-time GI for rich dynamic scenes
 - Higher quality, programmable AA
 - Working set management
 - Scalable 2D graphics acceleration
 - Create the best platform for DirectX 12

	680	780	980
TFLOPS	3	4	5
MEMORY	2GB	3GB	4GB
PERFORMANCE	1	1.5	2
POWER	195W	250W	165W
GFLOPS / WATT	15	15	30

- New architecture for improved effiency still on a 28nm process
- Massively improved perf / watt
- Focus on new graphics features
 - Real-time GI for rich dynamic scenes
 - Higher quality, programmable AA
 - Working set management
 - Scalable 2D graphics acceleration
 - Create the best platform for DirectX 12

- New architecture for improved effiency still on a 28nm process
- Massively improved perf / watt
- Focus on new graphics features
 - Real-time GI for rich dynamic scenes
 - Higher quality, programmable AA
 - Working set management
 - Scalable 2D graphics acceleration
 - Create the best platform for DirectX 12

- New architecture for improved effiency still on a 28nm process
- Massively improved perf / watt
- Focus on new graphics features
 - Real-time GI for rich dynamic scenes
 - Higher quality, programmable AA
 - Working set management
 - Scalable 2D graphics acceleration
 - Create the best platform for DirectX 12

Outline of this talk

Architectural goals of Maxwell

DirectX12 hardware features

Conservative Rasterization
Raster Order Views
Tiled Resources

Multi-Projection Acceleration

- New Antialiasing Features
- Misc other new features
- Questions and Answers

Standard Rasterization Limitations

Rasterization can't easily create data-structures
 Drops sub-pixel triangles

Data-structures used in later compute passes
 E.g. Ray-Tracing

Standard Rasterization Limitations

Rasterization can't easily create data-structures
 Drops sub-pixel triangles

Data-structures used in later compute passes
 E.g. Ray-Tracing

Conservative Rasterization

- Draws all pixels a triangle touches
 Different Tiers see DX spec
- Possible before through GS trick but relatively slow
 See J. Hasselgren et. Al, "Conservative Rasterization", GPU Gems 2
- Now we can use rasterization do implement some nice techniques!

Conservative Rasterization Usecases

 C. Wymann et. al, "Frustum-Traced Raster Shadows: Revisiting Irregular Z-Buffers", I3D 2015

 J. Story "Hybrid Ray-Traced Shadows", D3D Day GDC 2015

Conservative Rasterization Usecases

 C. Wymann et. al, "Frustum-Traced Raster Shadows: Revisiting Irregular Z-Buffers", I3D 2015

 J. Story "Hybrid Ray-Traced Shadows", D3D Day GDC 2015

Hybrid Raytraced Shadows using a NxNxd primitive map

Prim Count Map NxN

Prim Buffer

- See J. Story, "Hybrid Ray-Traced Shadows", D3D Day GDC 2015
- Prim Buffer Triangle vertices
- Prim Indices Map Prim buffer indices of triangles
- Prim Count Map # of tris per texel
- Raytrace triangles in a later pass

Prim Indices Map NxNxd

gameworks.nvidia.com | GDC 2015

Raytraced Shadows Demo

gameworks.nvidia.com | GDC 2015

Shadow Map SM = 8K x 8K (256 MB)

Ray Traced SM = 3K x 3K (36 MB) PM = 1K x 1K x 64 (256 MB)

Outline of this talk

Architectural goals of Maxwell

DirectX12 hardware features

Conservative Rasterization
Raster Order Views
Tiled Resources

Multi-Projection Acceleration

New Antialiasing Features

Misc other new features

• Questions and Answers

UAV Race Condition Issue

Pixel shader writes to UAVs are unordered
 Can't guarantee determinism

Can't do a number of things
 Programmable Blending
 Smart OIT implementations
 Arbitray g-buffer data packing
 Other per-pixel-data structures

Raster Order Views (ROVs)

- ROVs guarantee ordering
- Ordering doesn't come for free
 - Depth complexity affects performance
- Always compare with alternative implementations
 - Advanced Blending OpsAtomics

Outline of this talk

Architectural goals of Maxwell

DirectX12 hardware features

Conservative Rasterization
Raster Order Views
Tiled Resources

Multi-Projection Acceleration

- New Antialiasing Features
- Misc other new features
- Questions and Answers

DX12 Tiled Resources

Full support for tiled 3D Textures/Arrays

•On top of what DX11.2 provides

Recap Tiled Resources

Enable fine grained working set management
Texture defined as set of tiles
Memory for tiles allocated separately

Fine-grained working set management
 Texture streaming/ Clipmaps

Variable resolution resources
 Adaptive shadow maps
 Sparse multi-resolution rendering

Fine-grained working set management
 Texture streaming/ Clipmaps

Variable resolution resources
 Adaptive shadow maps
 Sparse multi-resolution rendering

Fine-grained working set management
 Texture streaming/ Clipmaps

Variable resolution resources
 Adaptive shadow maps
 Sparse multi-resolution rendering

Fine-grained working set management
 Texture streaming/ Clipmaps

- Variable resolution resources
 Adaptive shadow maps
 Sparse multi-resolution rendering
- Sparse representation
 Voxel grids
 Simulation physics, path finding

Fine-grained working set management
 Texture streaming/ Clipmaps

Variable resolution resources
 Adaptive shadow maps
 Sparse multi-resolution rendering

Sparse Fluid Simulation

 Uses tiled resources to only simulate/store grid cells that contain fluid

Save computation time and memory

 See Alex Dunn, "Sparse Fluid Simulation in DirectX", D3D Day GDC 2015

Sparse Fluid Demo

Outline of this talk

Architectural goals of Maxwell

DirectX12 hardware features

- Conservative Rasterization
 Raster Order Views
 Tiled Resources
- Multi-Projection Acceleration
- New Antialiasing Features
- Misc other new features
- Questions and Answers

Geometry Shader Challenges

Significant overhead even for pass-through cases

Significant overhead for viewport selection

Significant amplification overhead for multiple viewports

gameworks.nvidia.com | GDC 2015

Fast Geometry shader pass-through

Fast viewport multi-casting

Maxwell accelerates:

Fast Geometry shader pass-through

Fast viewport multi-casting

Maxwell accelerates:

Fast Geometry shader pass-through

Fast viewport multi-casting

Maxwell accelerates:

Fast Geometry shader pass-through

Fast viewport multi-casting

Maxwell accelerates:

Voxel Based GI - VXGI

Uses multi-projection for fast voxelization

 See Alexey Panteleev's talk later today, VXGI: dynamic global illumination for games

VXGI Result

VXGI

gameworks.nvidia.com | GDC 2015

F

VXGI demo

gameworks.nvidia.com | GDC 2015

Multi-Projection API Support

OpenGL+Android:

NV_geometry_shader_passthrough extension for GS pass-through
NV_viewport_array2 extension for viewport multicast
The extension specs have good shader examples

DX11/DX12:
 No explicit API publicly available yet - stay tuned

Outline of this talk

- Architectural goals of Maxwell
- DirectX12 hardware features
 Conservative Rasterization
 Raster Order Views
 Tiled Resources
- Multi-Projection Acceleration
- New Antialiasing Features
 Misc other new features
 Questions and Answers

Quick Multisampling Recap

Target-independent Multisampling

- Decouples visibility rate from color sample rate
- Allows lower color buffer storage cost for custom AA techniques
- Introduces coverage reduction stage
 - (CoverageAA / DepthStencilAA) (Eg. 8x)

>= ColorAA (Eg. 2x)

Post-depth Coverage

Pre-Maxwell : Coverage Mask delivered is pre-depth-test coverage
 No way to get at the post-depth-test coverage

Maxwell can deliver post-depth-coverage to the pixel shader

Multisample Coverage Override

• Pre-Maxwell : Shader can only reduce coverage sample set

Maxwell can fully override raster-coverage mask

Aggregate G-Buffer AA demo

- C. Crassin et. al, "Aggregate G-Buffer Anti-Aliasing", ID3D 2015
- Uses post depth coverage to only process visible sub-samples
- Uses coverage override to route to right sub-sample cluster
- Other work using Maxwell AA features:
 E. Enderton et. al, "Accumulative Anti-Aliasing", to appear

MSAA Coverage to Color Conversion

gameworks.nvidia.com | GDC 2015

Programmable Sample Locations

• Sample locations fully programmable

Foundation for Multi Frame sampled AA

Interleaved sample positions
 16x sample locations can be tiled to a set of pixels

Programmable Sample Locations

Sample locations fully programmable

Foundation for Multi Frame sampled AA

Interleaved sample positions •16x sample locations can be tiled to a set of pixels

1/2

Frame n

Temporal Synthesis Filter

4x MFAA

3/4

1/4

Programmable Sample Locations

Sample locations fully programmable

Foundation for Multi Frame sampled AA

Interleaved sample positions
 16x sample locations can be tiled to a set of pixels

Constant 4x pattern

API support Antialiasing Features

DirectX 12

Target-independent multipsampling

OpenGL+ Android:
Target-independent multisampling control:

NV_framebuffer_mixed_samples
EXT_raster_multisample

Coverage to color conversion: NV_fragment_coverage_to_color
Post-depth coverage : EXT_post_depth_coverage
Multisample coverage override : NV_sample_mask_override_coverage
Programmable sample locations : NV_sample_locations

• NvAPI:

Coming soon

Outline of this talk

- Architectural goals of Maxwell
- DirectX12 hardware features
 Conservative Rasterization
 Raster Order Views
 Tiled Resources
- Multi-Projection Acceleration
- New Antialiasing Features
- Misc other new features
- Questions and Answers

Screen Space BBox Rasterization

Screen Space Bbox rasterization

Reduce # of vertices sent to GPUSpeeds up particle systems, point sprite etc.

Supported by these APIs:

OpenGL: NV_fill_rectangle extensionNvAPI: coming soon

Min/Max texture filtering

Hardware support for min/max filtering

• Usecases:

Min-Max shadow mapsOther min-max reduction chains

• API support:

OpenGL: EXT_texture_filter_minmaxDirectX11.2

MAX returns "5"

MIN returns "0"

New Interlocked Operations 1

• 2D-vector: two 16bit floating point numbers

4D-vector: four 16bit floating point numbers

gameworks.nvidia.com | GDC 2015

New Interlocked Operations 2

• Usecases:

Reduce the number of Interlocked ops during e.g. light accumulation
Save memory if you only need 16bit values

API support

OpenGL + Android: NV_shader_atomic_fp16_vectorNvAPI: coming soon

Extended Blend Modes

- ZERO SRC
- DST
- SRC_OVER
- DST_OVER
- SRC_IN
- DST_IN
- SRC_OUT
- DST_OUT
- SRC_ATOP
- DST_ATOP
- XOR PLUS
- PLUS_CLAMPED
- PLUS_CLAMPED_ALPHA
- MULTIPLY
- SCREEN
- OVERLAY

- DARKEN
- LIGHTEN
- COLORDODGE
- COLORBURN
- HARDLIGHT
- SOFTLIGHT
- SOFTLIGHT_SVG
- DIFFERENCE
- MINUS
- MINUS_CLAMPED
- EXCLUSION
- CONTRAST
- INVERT INVERT_RGB
- INVERT_KHR
- LINEARDODGE
- LINEARBURN

- VIVIDLIGHT
- LINEARLIGHT
- PINLIGHT
- HARDMIX
- RED
- GREEN
- BLUE
- HSL_HUE
- HSL_SATURATION
- HSL_COLOR
- HSL_LUMINOSITY

Outline of this talk

Architectural goals of Maxwell

- DirectX12 hardware features
 Conservative Rasterization
 Raster Order Views
 Tiled Resources
- Multi-Projection Acceleration
- New Antialiasing Features
- Misc other new features
- Questions and Answers

GameWorks

Get the latest information for developers from NVIDIA and continue the discussion
 gameworks.nvidia.com