
© NVIDIA Corporation 2011

Peer-to-Peer &
Unified Virtual Addressing
CUDA Webinar

Tim C. Schroeder,
HPC Developer Technology Engineer

© NVIDIA Corporation 2011

Outline

� Overview: P2P & UVA

� UVA Memory Copy

� UVA Zero-Copy

� P2P Memory Copy

� P2P Direct Addressing

� Summary, Further Reading and Questions

© NVIDIA Corporation 2011

Unified Virtual Addressing
Easier to Program with Single Address Space

No UVA: Multiple Memory Spaces UVA: Single Address Space

System

Memory

CPU GPU0

GPU0

Memory

GPU1

GPU1

Memory

System

Memory

CPU GPU0

GPU0

Memory

GPU1

GPU1

Memory

PCI-e PCI-

0x0000

0xFFFF

0x0000

0xFFFF

0x0000

0xFFFF

0x0000

0xFFFF

© NVIDIA Corporation 2011

Peer-to-Peer (P2P) Communication

Direct Access Direct Transfers

GPU1

GPU1

Memory

GPU0

GPU0

Memory

Load / Store

PCI-e

cudaMemcpy()

GPU0

GPU0

Memory

GPU1

GPU1

Memory

PCI-e

Eliminates system memory allocation & copy overhead

More convenient multi-GPU programming

© NVIDIA Corporation 2011

What we’re focusing on today

� Lots of different use cases for P2P & UVA, we’re going to go
through the following:

� UVA Memory Copy - cudaMemcpy(…, cudaMemcpyDefault)

� P2P Memory Copy (GPU to GPU)

� P2P Memory Access from a CUDA kernel

� …as demonstrated by the simpleP2P sample

© NVIDIA Corporation 2011

Unified Virtual Addressing (UVA)

� One address space for all CPU and GPU memory

� Determine physical memory location from pointer value

� Enables libraries to simplify their interfaces (e.g. cudaMemcpy)

Before UVA With UVA

Separate options for each permutation One function handles all cases

cudaMemcpyHostToHost
cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

cudaMemcpyDefault
(data location becomes an implementation detail)

© NVIDIA Corporation 2011

UVA Memory Copy Step-by-Step (1/2)

� Copy without specifying in which memory space src / dst are

� Requirements

� Needs to be a 64bit application

� Fermi-class GPU

� Linux or Windows TCC

� CUDA 4.0

� Call cudaGetDeviceProperties() for all participating devices,
check cudaDeviceProp::unifiedAddressing flag

© NVIDIA Corporation 2011

UVA Memory Copy Step-by-Step (2/2)

� Between host and multiple devices:

cudaMemcpy(gpu0_buf, host_buf, buf_size, cudaMemcpyDefault)

cudaMemcpy(gpu1_buf, host_buf, buf_size, cudaMemcpyDefault)

cudaMemcpy(host_buf, gpu0_buf, buf_size, cudaMemcpyDefault)

cudaMemcpy(host_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

� Between two devices:

cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

© NVIDIA Corporation 2011

Zero-Copy Memory With UVA

� Pointers returned by cudaHostAlloc() can be used directly from
within kernels running on UVA enabled devices (i.e. there is no
need to obtain a device pointer via cudaHostGetDevicePointer())

© NVIDIA Corporation 2011

Peer-to-Peer Communication Between GPUs

� Direct Transfers

� cudaMemcpy() initiates DMA copy from GPU0 memory to GPU1 memory

� Works transparently with CUDA Unified Virtual Addressing (UVA)

� Direct Access

� GPU0 reads or writes GPU1 memory (load/store)

� Data cached in L2 of the target GPU

� Performance Expectations

� High bandwidth: saturates PCIe (> 6GB/s observed)

� Low latency: 1 PCIe transaction + 1 memory fetch (~2.5us)

© NVIDIA Corporation 2011

P2P Memory Copy Step-by-Step (1/4)

� Copy data between GPUs without going through host memory

� Requirements

� Needs to be a 64bit application

� Fermi-class Tesla GPU

� Linux or Windows TCC

� CUDA 4.0

� Drivers v270.41.19 or later

� GPUs need to be on same IOH

© NVIDIA Corporation 2011

P2P Memory Copy Step-by-Step (2/4)

� Check for peer access between participating GPUs:

cudaDeviceCanAccessPeer(&can_access_peer_0_1, gpuid_0, gpuid_1);

cudaDeviceCanAccessPeer(&can_access_peer_1_0, gpuid_1, gpuid_0);

� Enable peer access between participating GPUs:

cudaSetDevice(gpuid_0);

cudaDeviceEnablePeerAccess(gpuid_1, 0);

cudaSetDevice(gpuid_1);

cudaDeviceEnablePeerAccess(gpuid_0, 0);

© NVIDIA Corporation 2011

P2P Memory Copy Step-by-Step (3/4)

� Now we can do a UVA memory copy just like before:

cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

� cudaMemcpy() knows that our buffers are on different devices
(UVA), will do a P2P copy now

� Note that this will transparently fall back to a normal copy
through the host if P2P is not available

© NVIDIA Corporation 2011

P2P Memory Copy Step-by-Step (4/4)

� Shutdown peer access at the end:

cudaSetDevice(gpuid_0);

cudaDeviceDisablePeerAccess(gpuid_1);

cudaSetDevice(gpuid_1);

cudaDeviceDisablePeerAccess(gpuid_0);

� Optional

No need to shutdown if you’re requiring the same peer access throughout your
program, but if it’s limited to a specific phase you can potentially reduce overhead
and free resources by explicitly disabling it once you’re done

© NVIDIA Corporation 2011

P2P Direct Access Step-by-Step (1/3)

� Starting point – same as for P2P memory copy

� Same initialization

� cudaDeviceCanAccessPeer()

� cudaDeviceEnablePeerAccess()

� Same shutdown

� cudaDeviceDisablePeerAccess()

� Same system requirements

© NVIDIA Corporation 2011

P2P Direct Access Step-by-Step (2/3)

� Basic copy kernel as example, taking two buffers:

__global__ void SimpleKernel(float *src, float *dst)

{

const int idx = blockIdx.x * blockDim.x + threadIdx.x;

dst[idx] = src[idx];

}

© NVIDIA Corporation 2011

P2P Direct Access Step-by-Step (3/3)

� After P2P initialization, this kernel can now read and write data in
the memory of multiple GPUs:

cudaSetDevice(gpuid_0); SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpu1_buf);

cudaSetDevice(gpuid_0); SimpleKernel<<<blocks, threads>>> (gpu1_buf, gpu0_buf);

cudaSetDevice(gpuid_1); SimpleKernel<<<blocks, threads>>> (gpu0_buf, gpu1_buf);

cudaSetDevice(gpuid_1); SimpleKernel<<<blocks, threads>>> (gpu1_buf, gpu0_buf);

� UVA makes sure the kernel knows whether its argument is from
local memory, another GPU or zero-copy from the host

© NVIDIA Corporation 2011

Summary

� P2P and UVA can be used to both simplify and accelerate your
CUDA programs

� Faster memory copies between GPUs with less host overhead

� Kernels can directly read and write memory of other GPUs

� Transparent addressing of memory on different devices

© NVIDIA Corporation 2011

Further reading

� simpleP2P Sample, SDK 4.0 (Demonstrates both P2P & UVA)

� CUDA Programming Guide 4.0

� 3.2.6.4 Peer-to-Peer Memory Access

� 3.2.6.5 Peer-to-Peer Memory Copy

� 3.2.7 Unified Virtual Address Space

Questions?

